Nav: Home

Colonization in slow motion

March 22, 2019

There is a wide variety of animals living on the Arctic seabed. Attached to rocks, they feed by removing nutrients from the water using filters or tentacles. But it can take decades for these colonies to become established, and they probably don't achieve their natural diversity until much later. These are the findings of a unique 18-year study by researchers from the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), which has now been published in the scientific journal Limnology and Oceanography.

Some sponge species stand on rocks like Roman vases, while the tentacles of feather stars (comatulida) and sea lilies sway elegantly in the currents. When remotely operated underwater vehicles travel around the bed of the Arctic deep sea, their cameras regularly capture images of these sedentary creatures. One of the most important habitats for these organisms is the so-called "dropstones" - rocks and boulders that are incorporated into glaciers on land and then transported out to sea. Once the ice melts, the rocks sink to the seabed, where they provide precisely the hard substrate that many of these species require.

But how long does it take before the first settlers in the Arctic deep sea take advantage of this? And how does the community develop further? "Until now we knew next to nothing about this," explains Michael Klages from the AWI. A few studies have investigated these questions in the Antarctic, but they focused on the shallow sea areas, where the conditions are different.

Now, there are new findings from the deep-sea observatory HAUSGARTEN, located in the Fram Strait between Svalbard and Greenland, where the AWI conducts various long-term ecological studies. In July 1999, Michael Klages and his colleagues from the AWI's deep-sea research group placed a heavy metal frame on the seabed at a depth of 2,500 metres. So-called settlement panels made of clinker bricks, Plexiglas and wood were attached to the frame to offer possible substrates for sedentary deep-sea inhabitants. Then it was a case of waiting to see what happened.

In 2003 and 2011, the team sent a remotely operated underwater vehicle to the construction, and in late August 2017 the frame was finally brought back to the surface. The first author of the recent publication, Kirstin Meyer-Kaiser, who now works at the Woods Hole Oceanographic Institution in the US state of Massachusetts, had the task of carefully examining the settlement panels. This involved counting, collecting and taxonomically classifying the individual organisms.

"In this investigation we saw that colonisation of such habitats in the Arctic deep sea occurs extremely slowly," summarises Michael Klages. After four years, only single-celled organisms belonging to the foraminifera were found on the panels, and after twelve years the polyp Halisiphonia arctica was the only multicellular animal present. Even after 18 years, there were only 13 species of multicellular invertebrates.

However, despite the low diversity, the researchers haven't concluded that natural solid substrates are not an important habitat - on the contrary: "Without them, a number of sedentary animals wouldn't exist in the Arctic deep sea," stresses Michael Klages. But the waste products of civilisation that are now ubiquitous in the oceans don't appear to be a good substitute - despite the fact that the AWI team have seen a sea lily growing on a plastic bottle in one of the pictures taken by the remotely operated underwater vehicle. "That's what gave us the idea of using Plexiglas in our experiment," the researcher explains. "We wanted to see whether it could be colonised just as well as a near-natural substrate." Apparently that's not the case. At least, after 18 years significantly fewer animals were found on the plastic than on the clinker bricks. But the latter couldn't compete with a nearby rocky reef, where 65 different invertebrates were identified. It is possible that even almost two decades isn't long enough for the panels to achieve their theoretical species diversity. The rocky reef mentioned is considerably older in comparison, and so has had more time to attract a wider range of inhabitants.

The findings provide important insights into the sensitivity of deep-sea ecosystems. "If disturbances there destroy the sedentary inhabitants of the seabed, it can take decades for the colonies to recover," says Michael Klages. In the Arctic, such disturbances could occur as a result of fishing, or drilling for oil and gas. However, much more far-reaching consequences are to be expected, e.g. in the depths of the Pacific, where large-scale manganese nodule mining is planned.
-end-
Original Study: Kirstin Meyer, Melanie Bergmann, Thomas Soltwedel, Michael Klages: Recruitment of Arctic deep-sea invertebrates: results from a long-term hard-substrate colonization experiment at the LTER observatory HAUSGARTEN. Limnology and Oceanography (2019). DOI: 10.1002/lno.11160

Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research

Related Arctic Articles:

The Arctic is burning in a whole new way
'Zombie fires' and burning of fire-resistant vegetation are new features driving Arctic fires -- with strong consequences for the global climate -- warn international fire scientists in a commentary published in Nature Geoscience.
Warming temperatures are driving arctic greening
As Arctic summers warm, Earth's northern landscapes are changing. Using satellite images to track global tundra ecosystems over decades, a new study found the region has become greener, as warmer air and soil temperatures lead to increased plant growth.
Arctic transitioning to a new climate state
The fast-warming Arctic has started to transition from a predominantly frozen state into an entirely different climate with significantly less sea ice, warmer temperatures, and more rain, according to a comprehensive new study of Arctic conditions.
New depth map of the Arctic Ocean
An international team of researchers has published the most detailed submarine map of the Artic Ocean.
Where are arctic mosquitoes most abundant in Greenland and why?
Bzz! It's mosquito season in Greenland. June and July is when Arctic mosquitoes (Aedes nigripes) are in peak abundance, buzzing about the tundra.
What happens in Vegas, may come from the Arctic?
Ancient climate records from Leviathan Cave, located in the southern Great Basin, show that Nevada was even hotter and drier in the past than it is today, and that one 4,000-year period in particular may represent a true, ''worst-case'' scenario picture for the Southwest and the Colorado River Basin -- and the millions of people who rely on its water supply.
Arctic Ocean changes driven by sub-Arctic seas
New research explores how lower-latitude oceans drive complex changes in the Arctic Ocean, pushing the region into a new reality distinct from the 20th-century norm.
Arctic Ocean 'regime shift'
Stanford scientists find the growth of phytoplankton in the Arctic Ocean has increased 57 percent over just two decades, enhancing its ability to soak up carbon dioxide.
Spider baby boom in a warmer Arctic
Climate change leads to longer growing seasons in the Arctic.
A carbon sink shrinks in the arctic
Ice melts in the Arctic Ocean were thought to be drawing large amounts of carbon dioxide out of the atmosphere, acting as a carbon sink and helping to mitigate greenhouse gases.
More Arctic News and Arctic Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.