Nav: Home

Jupiter's unknown journey revealed

March 22, 2019

It is known that gas giants around other stars are often located very near their sun. According to accepted theory, these gas planets were formed far away and subsequently migrated to an orbit closer to the star.

Now researchers from Lund University and other institutions have used advanced computer simulations to learn more about Jupiter's journey through our own solar system approximately 4.5 billion years ago. At that time, Jupiter was quite recently formed, as were the other planets in the solar system. The planets were gradually built up by cosmic dust, which circled around our young sun in a disk of gas and particles. Jupiter was no larger than our own planet.

The results show that Jupiter was formed four times further from the sun than its current position would indicate.

"This is the first time we have proof that Jupiter was formed a long way from the sun and then migrated to its current orbit. We found evidence of the migration in the Trojan asteroids orbiting close to Jupiter", explains Simona Pirani, doctoral student in astronomy at Lund University, and the lead author of the study.

These Trojan asteroids consist of two groups of thousands of asteroids that reside at the same distance from the Sun as Jupiter, but orbiting in front of and behind Jupiter, respectively. There are approximately 50 per cent more Trojans in front of Jupiter than behind it. It is this asymmetry that became the key to the researchers' understanding of Jupiter's migration.

"The asymmetry has always been a mystery in the solar system", says Anders Johansen, professor of astronomy at Lund University.

Indeed, the research community had previously been unable to explain why the two asteroid groups do not contain the same number of asteroids. However, Simona Pirani and Anders Johansen, together with other colleagues, have now identified the reason by recreating the course of events of Jupiter's formation and how the planet gradually drew in its Trojan asteroids.

Thanks to extensive computer simulations, the researchers have calculated that the current asymmetry could only have occurred if Jupiter was formed four times further out in the solar system and subsequently migrated to its current position. During its journey towards the sun, Jupiter's own gravity then drew in more Trojans in front of it than behind it.

According to the calculations, Jupiter's migration went on for around 700 000 years, in a period approximately 2-3 million years after the celestial body started its life as an ice asteroid far from the sun. The journey inwards in the solar system followed a spiralling course in which Jupiter continued to circle around the sun, albeit in an increasingly tight path. The reason behind the actual migration relates to gravitational forces from the surrounding gases in the solar system.

The simulations show that the Trojan asteroids were drawn in when Jupiter was a young planet with no gas atmosphere, which means that these asteroids most probably consist of building blocks similar to those that formed Jupiter's core. In 2021, NASA's space probe Lucy will be launched into orbit around six of Jupiter's Trojan asteroids to study them.

"We can learn a lot about Jupiter's core and formation from studying the Trojans", says Anders Johansen.

The authors of the study also suggest that the gas giant Saturn and the ice giants Uranus and Neptune could have migrated in a similar way.
-end-


Lund University

Related Solar System Articles:

Second alignment plane of solar system discovered
A study of comet motions indicates that the Solar System has a second alignment plane.
Pressure runs high at edge of solar system
Out at the boundary of our solar system, pressure runs high.
What a dying star's ashes tell us about the birth of our solar system
A UA-led team of researchers discovered a dust grain forged in a stellar explosion before our solar system was born.
What scientists found after sifting through dust in the solar system
Two recent studies report discoveries of dust rings in the inner solar system: a dust ring at Mercury's orbit, and a group of never-before-detected asteroids co-orbiting with Venus, supplying the dust in Venus' orbit.
Discovered: The most-distant solar system object ever observed
A team of astronomers has discovered the most-distant body ever observed in our solar system.
Discovery of the first body in the Solar System with an extrasolar origin
Asteroid 2015 BZ509 is the very first object in the Solar System shown to have an extrasolar origin.
First interstellar immigrant discovered in the solar system
A new study has discovered the first known permanent immigrant to our solar system.
A star disturbed the comets of the solar system in prehistory
About 70,000 years ago, when the human species was already on Earth, a small reddish star approached our solar system and gravitationally disturbed comets and asteroids.
Scientists detect comets outside our solar system
Scientists from MIT and other institutions, working closely with amateur astronomers, have spotted the dusty tails of six exocomets -- comets outside our solar system -- orbiting a faint star 800 light years from Earth.
Does the organic material of comets predate our solar system?
The Rosetta space probe discovered a large amount of organic material in the nucleus of comet 'Chury.' In an article published by MNRAS on Aug.
More Solar System News and Solar System Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.