Nav: Home

Time maps: How our brain perceives time

March 22, 2019

What happens in our brain when we listen to the rhythmic pace of a song or when, at the traffic light, the light is red and we are trembling awaiting the green? How do we perceive such an abstract feature of the world? For the first time in humans, an imaging study shows that in a specific area of the brain, the so-called "supplementary motor area (SMA)", a time map exists. The study, conducted by the team led by SISSA Professor Domenica Bueti and published in PLOS Biology, shows that distinct portions of the SMA, a region of the cerebral cortex important for both motor preparation and time perception--respond preferentially to different durations. The portions of the SMA responding to similar durations are in close spatial proximity on the cortical surface according to an anterior-to-posterior spatial gradient. The most anterior portions of SMA are greatly active for the shortest duration (200 ms), while the most posterior bits are active for the longest duration (3 sec), the intermediate durations led to the activation of the cortex between those extremes. These novel findings, which are the result of a collaborative effort between SISSA and research institutions in Japan, Switzerland and the Netherlands, are important to gain insights on the computational architecture underlying time perception and they also open up new perspectives to the study of temporal cognition.

The representation of time

"Topography i.e., the fact that neurons processing similar stimulus properties occupy neighbouring positions on the nervous system, is an encoding mechanism widely used in the brain to represent sensory and motor information. For example, there is a body map in our primary somatosensory cortex. In this map, the portions of the cortex receiving tactile information from the hand and the wrist are neighbours compared to those receiving information from the toe" says Domenica Bueti, coordinator of the research whose leading author is the Greek researcher Foteini Protopapa: "our findings show that a topographic representation exists also for something immaterial like time". Previous studies conducted in humans and other animals have shown the involvement of SMA in time perception. However none of those previous works clarified how temporal information is represented in this area.

"With our work we show that in SMA time is represented via topography and duration tuning. The first, as we said earlier, refers to the fact that the portions of SMA responding to similar durations are in close spatial proximity on the cortical surface". The second is duration tuning: "our results show that different portions of SMA respond preferentially to certain durations in a way that the response is greater for the preferred duration and become progressively weaker for durations far from the preferred one. Moreover, we show that temporal maps are linked to perception: i.e., the better the map in SMA, the more accurate and precise is duration perception. This is how SMA represents time".

A cutting-edge study

The research was conducted with functional magnetic resonance imaging (fMRI) at ultra-high field i.e., 7 Tesla, available at the Ecole Polytechnique Federale of Lausanne. During the study, two groups of healthy volunteers carried out a temporal discrimination task of visual stimuli i.e., two images displayed in sequence on a computer screen for durations ranging from 200 milliseconds up to 3 seconds. Each volunteer had to decide which of the two images was presented for longer time. While the volunteers carried out the task, their cerebral activity was recorded through fMRI.

"It was an extremely complex study, which took a long time to carry out and, besides SISSA, it involved researchers from Osaka University, Sussex University, the Ecole Polytechnique Federale of Lausanne, the Royal Academy for Arts and Sciences of Amsterdam, Lausanne University and Araya Inc. of Tokyo" explains Domenica Bueti.

Perceiving time: innate or acquired phenomenon?

Many interesting and fascinating questions arise from these original findings. Domenica Bueti explains: "We have now to understand what is the time that has been mapped in SMA: is it the physical or the perceived time? Does the map change as the perceived duration changes? Does the map change if an observer perceives a stimulus, which was physically displayed on the screen for one second, as either longer (for example a second and a half) or shorter (for example, 800 milliseconds)? And, are there maps at birth? Or are they the by-product of experience and education? These are important and fascinating questions we would like to investigate with our future research".
-end-


Scuola Internazionale Superiore di Studi Avanzati

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".