Greenland's glaciers pick up pace in surge toward the sea

March 23, 2006

With warming temperatures as the possible underlying cause, scientists wonder what is pushing Greenland's glaciers out to sea as much as 50 percent quicker than before.

As a glacier loses large pieces of ice on its leading edge, a process called calving, openings may be created for ice to stream through more quickly, sort of like water flooding through a sudden break in a dike or dam, suggests Ian Joughin, a glaciologist with the University of Washington's Applied Physics Laboratory.

"Greenland Rumbles Louder as Glaciers Accelerate" is Joughin's commentary in this week's Science on work reported by Harvard University's Goran Ekstrom and co-authors saying that glacier quakes, one way scientists can monitor glacial activity, have increased dramatically. The Ekstrom article says that seismic data from 1993 through 2005 reveals summer glacial seismicity nearly five times greater than in winter, and a rapid increase in seismicity from 2002 onwards, with 2005 producing nearly as many events as the combined total for 1993 through 1996.

The authors of that research article hypothesize that the ice is slipping on growing pockets of meltwater, like a car hydroplaning on rain-slicked streets. The meltwater drains during the summer from the surface of the glacier to the bed through glacial conduits called moulins.

Because calving of Greenland's fastest-moving glacier, Jakobshavn Isbrae, has an annual variability similar to its glacier quakes, Joughin writes that other explanations may revolve around calving.

"Large calving events alone might yield mass displacements sufficient to produce glacier quakes," he writes. "Alternatively, changes in glacier geometry after a calving event introduce a force imbalance, which may yield a slip event as new force balance is established."

Or perhaps glacier quakes are produced by stick-slip events that occur in the normal course of glacier sliding, with only hour-long periods of sticking required to build enough elastic strain to produce a detectable slip event when the ice begins to move again, he says.

Joughin, who published findings two years ago that the Jakobshavn Isbrae glacier had doubled its speed between 1997 and 2003, uses radar images from satellites to monitor the glaciers he studies.

Seismic activity has been monitored locally in Antarctica and elsewhere by placing seismometers on the glaciers. Now the Ekstrom group has determined that glacier quakes could be detected even half a world away by the existing network of seismometers that measures regular earthquakes.

"This teleseismic data provides a powerful new means for monitoring glacial activity," Joughin says.
For more information: Joughin, (206) 221-3177,

University of Washington

Related Glaciers Articles from Brightsurf:

Rock debris protects glaciers from climate change more than previously known
A new study which provides a global estimate of rock cover on the Earth's glaciers has revealed that the expanse of rock debris on glaciers, a factor that has been ignored in models of glacier melt and sea level rise, could be significant.

New 'law' to explain how glaciers flow over soft ground
Addressing a major source of uncertainty in glacier-flow models, researchers present a new slip law to describe glaciers sliding on soft, deformable material.

Melting glaciers will challenge some salmon populations and benefit others
A new Simon Fraser University-led study looking at the effects that glacier retreat will have on western North American Pacific salmon predicts that while some salmon populations may struggle, others may benefit.

How the ocean is gnawing away at glaciers
The Greenland Ice Sheet is melting faster today than it did only a few years ago.

Last remaining glaciers in the Pacific will soon melt away
The last remaining tropical glaciers between the Himalayas and the Andes will disappear in the next decade -- and possibly sooner -- due to climate change, a new study has found.

Drones help map Iceland's disappearing glaciers
Dr. Kieran Baxter from the University of Dundee has created composite images that compare views from 1980s aerial surveys to modern-day photos captured with the help of state-of-the-art technology.

Disappearing Peruvian glaciers
It is common knowledge that glaciers are melting in most areas across the globe.

New insight into glaciers regulating global silicon cycling
A new review of silicon cycling in glacial environments, led by scientists from the University of Bristol, highlights the potential importance of glaciers in exporting silicon to downstream ecosystems.

Tidewater glaciers: Melting underwater far faster than previously estimated?
A tidewater glacier in Alaska is melting underwater at rates upwards of two orders of magnitude greater than what is currently estimated, sonar surveys reveal.

Asia's glaciers provide buffer against drought
A new study to assess the contribution that Asia's high mountain glaciers make to relieving water stress in the region is published this week (May 29, 2019) in the journal Nature.

Read More: Glaciers News and Glaciers Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to