Nav: Home

Assembly of genetic sequences approaches 100 percent accuracy

March 23, 2017

Researchers have greatly improved upon a technique to assemble genetic sequences from scratch, reaching more than 99% accuracy in assembling the human genome in the correct order. They applied the technique to assemble the genomes of two species of mosquito that spread disease, providing important insights into the ancestry of these species. The advancement will accelerate the genomic analysis of many organisms. Most genomes sequenced today are determined through the generation of short sequenced bits of DNA that are computationally pieced together like a jigsaw puzzle. Hi-C is a sequencing-based approach to piecing these sequences together, ordering and orienting genetic sequences along scaffolding within a chromosome. Given how compact and tightly coiled genetic material is within chromosomes, however, mistakes in genome assembly can easily be made. Here, Olga Dudchenko and colleagues developed a technique to identify positions where a scaffold's long-range contact pattern changes abruptly, hinting that a scaffold has been incorrectly positioned. As well, they developed a novel algorithm to better anchor, order, and orient the sequences. The authors used this modified Hi-C technique to assemble a human genome, finding that 99% of genetic sequences matched a standard reference human genome, and that the orientation was correct for 93% of scaffolds. Next the team used the technique to assemble the genomes of two mosquito species, respectively, that spread disease, Aedes aegypti, a vector for Zika virus, and Culex quinquefasciatus, a vector for West Nile virus. The data shed light on the shared ancestry of these species, which could help scientists better understand ways to control these vectors in the future.
-end-


American Association for the Advancement of Science

Related Human Genome Articles:

It's in our genome: Uncovering clues to longevity from human genetics
Researchers from Osaka University found that high blood pressure and obesity are the strongest factors reducing lifespan based on genetic and clinical information of 700,000 patients in the UK, Finland and Japan.
Scientists generate an atlas of the human genome using stem cells
Scientists from the Hebrew University of Jerusalem have generated an atlas of the human genome that illuminates the roles our genes play in health and disease.
New limits to functional portion of human genome reported
An evolutionary biologist at the University of Houston has published new calculations that indicate no more than 25 percent of the human genome is functional.
Synthesizing the human genome from scratch
For the past 15 years, synthetic biologists have been figuring out how to synthesize an organism's complete set of DNA, including all of its genes.
Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Evolution purged many Neanderthal genes from human genome
Neanderthal genetic material is found in only small amounts in the genomes of modern humans because, after interbreeding, natural selection removed large numbers of weakly deleterious Neanderthal gene variants, according to a study by Ivan Juric and colleagues at the University of California, Davis, published Nov.
Mathematical analysis reveals architecture of the human genome
Mathematical analysis has led researchers in Japan to a formula that can describe the movement of DNA inside living human cells.
Navigating the human genome with Sequins
Australian genomics researchers have announced the development of Sequins -- synthetic 'mirror' DNA sequences that reflect the human genome.
Scientists cut 'Gordian knot' in the human genome
Females have two X chromosomes in each of their cells.
Guidelines for human genome editing
As countries around the world seek to craft policy frameworks governing the powerful new genetic editing tool, policy makers need to determine 'thresholds of acceptability' for using the technology, according to three researchers from the Centre of Genomics and Policy at McGill University.
More Human Genome News and Human Genome Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.