Nav: Home

OTUD6B gene mutations cause intellectual and physical disability

March 23, 2017

An international team of researchers from institutions around the world, including Baylor College of Medicine, has discovered that mutations of the OTUD6B gene result in a spectrum of physical and intellectual deficits. This is the first time that this gene, whose functions are beginning to be explored, has been linked to a human disease. The study appears in the American Journal of Human Genetics.

"Our interest in this gene began when we carried out whole exome sequencing -- the analysis of all the protein-coding genes -- of one of our patients who had not received a genetic diagnosis for his condition that includes a number of intellectual and physical disabilities," said co-first author Dr. Teresa Sim, a postdoctoral associate of molecular and human genetics and a fellow in Clinical Molecular Genetics and Genomics. "We identified OTUD6B, a gene that until now had not been linked to a health condition."

"We identified a presumed loss-of-function mutation in the OTUD6B gene in our first patient," said co-senior author Dr. Magdalena Walkiewicz, assistant professor of molecular and human genetics at Baylor and assistant laboratory director at Baylor Genetics. "We discovered that this gene seemed to be highly involved in human development; when the gene cannot fulfill its function, the individual presents with severe intellectual disability, a brain that does not develop as expected and poor muscular tone that limits the ability to walk, as well as cardiovascular problems."

Making a convincing case for OTUD6B

However, one case does not represent sufficient evidence to support the involvement of OTUD6B in the medical condition.

"To make a convincing case that this gene is essential for human development we needed to find more individuals carrying mutations in OTUD6B," Walkiewicz said.

Mutations in OTUD6B are rare so the researchers had to look into the exomes - all the protein-coding genes - of a large number of individuals to find others carrying mutations in this gene. Walkiewicz and her colleagues first looked into their clinical exome database at Baylor Genetics labs, specifically into the data of nearly 9,000 unrelated, mostly pediatric-age individuals, many of which carrying neurologic conditions, and found an additional individual carrying genetic changes in the same gene. The clinical characteristics of this individual were strikingly similar to those of the first patient, which led the team to expand their search for more patients.

"When we study very rare disorders we rely on collaborations with scientists around the world to find other families affected by mutations in one gene," said Walkiewicz.

One of the strategies that helps researchers find more cases is running the gene of interest through GeneMatcher, a web-tool developed as part of the Baylor-Hopkins Center for Mendelian Genomics for rare disease researchers. Similar to online dating websites that match couples, GeneMatcher allows researchers to find others that are interested in the same genes they are working on.

"Without this type of collaborations it would be very difficult to make a convincing case. Between GeneMatcher and our database we found a total of 12 individuals carrying mutations in OTUD6B and presenting with similar clinical characteristics," Walkiewicz said.

An animal model corroborates the human findings

"Animal models are one way to determine whether a change in this gene is actually causing the condition," said co-senior author Dr. Jason Heaney, assistant professor of molecular and human genetics and director of the Mouse Embryonic Stem Cell Core at Baylor. "Having a similar change in an animal model gene that results in similar characteristics in a mouse can show us whether the gene is causing the condition."

Baylor is part of the International Mouse Phenotyping Consortium. Its goal is to generate a knockout model for every gene in the mouse genome, about 20,000 protein-coding genes, and determine what each gene is involved with.

"In this case we learned in the animal model lacking the OTUD6B gene that the gene is highly expressed in the brain and we knew that the patients had reduced intellectual capacities. The animals had cardiovascular defects very similar to those in the patient population. The animal models allowed us to see that having this mutation of this gene causes the clinical characteristics observed in the patients. It highlights how useful animal models can be for understanding human disease," Heaney said.

Through multiple lines of evidence the researchers have established that mutations in OTUD6B can cause a range of neurological and physical conditions and highlight the role of this gene in human development.

"In addition, our collaborators in Germany performed functional analysis for this gene on blood cells from patients," Walkiewicz said. "Their findings suggest that the OTUD6B protein contributes to the function of proteasomes, large molecular complexes that are at the center of the cellular process that degrades proteins that are damaged or are not needed by the cell. This discovery strengthens the notion that disturbances of the proteasome can cause human disease."

"There is interest in better understanding the mechanisms of the disorder at the cellular and molecular level. By understanding the processes that lead to the disease, we can then hope to develop therapies for those patients," said Walkiewicz. "One of the highlights of this project is the tremendous collaboration with a number of different centers and labs and putting this tremendous effort together resulted in a publication that is very strong."

"Another important contribution of this project is that we provided some answers for the families, and brought them together which offers the opportunity of mutual support," said Sim.
For a complete list of the authors and their affiliations and financial support for this project click here.Watch the authors presenting the highlights of this paper, here.

Baylor College of Medicine

Related Genes Articles:

Insomnia genes found
An international team of researchers has found, for the first time, seven risk genes for insomnia.
Genes affecting our communication skills relate to genes for psychiatric disorder
By screening thousands of individuals, an international team led by researchers of the Max Planck Institute for Psycholinguistics, the University of Bristol, the Broad Institute and the iPSYCH consortium has provided new insights into the relationship between genes that confer risk for autism or schizophrenia and genes that influence our ability to communicate during the course of development.
The fate of Neanderthal genes
The Neanderthals disappeared about 30,000 years ago, but little pieces of them live on in the form of DNA sequences scattered through the modern human genome.
Face shape is in the genes
Many of the characteristics that make up a person's face, such as nose size and face width, stem from specific genetic variations, reports John Shaffer of the University of Pittsburgh in Pennsylvania, and colleagues, in a study published on Aug.
Study finds hundreds of genes and genetic codes that regulate genes tied to alcoholism
Using rats carefully bred to either drink large amounts of alcohol or to spurn it, researchers at Indiana and Purdue universities have identified hundreds of genes that appear to play a role in increasing the desire to drink alcohol.
Reading between the genes
For a long time dismissed as 'junk DNA,' we now know that also the regions between the genes fulfill vital functions.
The silence of the genes
Research led by Dr. Keiji Tanimoto from the University of Tsukuba, Japan, has brought us closer to understanding the mechanisms underlying the phenomenon of genomic imprinting.
Why some genes are highly expressed
The DNA in our cells is folded into millions of small packets, like beads on a string, allowing our two-meter linear DNA genomes to fit into a nucleus of only about 0.01 mm in diameter.
Activating genes on demand
A new approach developed by Harvard geneticist George Church, Ph.D., can help uncover how tandem gene circuits dictate life processes, such as the healthy development of tissue or the triggering of a particular disease, and can also be used for directing precision stem cell differentiation for regenerative medicine and growing organ transplants.
Controlling genes with light
Researchers at Duke University have demonstrated a new way to activate genes with light, allowing precisely controlled and targeted genetic studies and applications.

Related Genes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...