Nav: Home

Study shows how brain combines subtle sensory signals to take notice

March 23, 2017

PROVIDENCE, R.I. [Brown University] --A new study describes a key mechanism in the brain that allows animals to recognize and react when subtle sensory signals that might not seem important on their own occur simultaneously. Such "multisensory integration" (MSI) is a vital skill for young brains to develop, said the authors of the paper in eLife, because it shapes how effectively animals can make sense of their surroundings.

For a mouse, that ability can make the difference between life and death. Neither a faint screech nor a tiny black speck in the sky might trigger any worry, but the two together strongly suggest a hawk is in the air. It matters in daily human life, too. An incoming call on a cell phone can be more noticeable when it is signaled visually and with sound, for example.

"It's really important to understand how all of our senses interact to give us a whole picture of the world," said study lead author Torrey Truszkowski, a neuroscience doctoral student at Brown University. "If something is super salient in the visual system -- a bright flash of light -- you don't need the multisensory mechanism. If there is only a small change in light levels, you might ignore it -- but if in the same area of visual space you also have a piece of auditory information coming in, then you are more likely to notice that and decide if you need to do something about that."

To understand how that happens, Truszkowski and her team performed the new study in tadpoles. The juvenile frogs turn out to be a very convenient model of a developing MSI architecture that has a direct analog in the brains of mammals including humans.

Neuroscientists call the key property the tadpoles modeled in this study, the ability of brain cells and circuits to sometimes respond strongly to faint signals, "inverse effectiveness." Study senior author Carlos Aizenman, associate professor of neuroscience and member of the Brown Institute for Brain Science, said the new paper represents, "the first cellular-level explanation of inverse effectiveness, a property of MSI that allows the brain to selectively amplify weak sensory inputs from single sources and that represent multiple sensory modalities."

Tadpole trials

To achieve that explanation at the level of cells and proteins, the researchers started with behavior. Tadpoles swimming in a laboratory dish will speed up -- as if startled -- when they detect a strong and sudden sensory stimulus, such as a pattern of stripes projected from beneath or a loud clicking sound. In their first experiment, the researchers measured changes in swimming speed when they provided strong stimuli, then weaker stimuli, and finally weaker stimuli in combination.

What they found is that more subtle versions of the stimuli -- for example, stripes with only 25 percent of maximum contrast -- barely affected swim speed when presented alone. But when such subtle stripes were presented simultaneously with subtle clicks, they produced a startle response as great as when full-contrast stripes were projected on the dish.

To understand how that works in the brain, the researchers conducted further experiments where they made measurements in a region called the optic tectum where tadpoles process sensory information. In mammals such as humans, the same function is performed by cells in the superior colliculus. The tadpole optic tectum sits right at the top of the brain. Given that fortuitous position and the animals' transparent skin, scientists can easily observe the activity of cells and networks in living, behaving tadpoles using biochemistry to make different cells light up when they are active.

In many individual cells and across networks in the optic tectum, the researchers found that neural activity barely budged when tadpoles saw, heard or felt a subtle stimulus individually, but it jumped tremendously when subtle stimuli were simultaneous. The "inverse effectiveness" apparent in the swim speed behavior had a clear correlate in the response of brain cells and networks that process the senses.

The key question was how that inverse effectiveness works. The team had two molecular suspects in mind: a receptor for the neurotransmitter GABA or a specific type of glutamate receptor called NMDA. In experiments, they used chemicals to block receptors for either. They found the blocking GABA didn't affect inverse effectiveness but that blocking NMDA made a significant difference.

NMDA's role makes sense because it is already known to matter in detecting coincidence, for instance when the spiny dendrites of a neuron receive simultaneous signals from other neurons. Truszkowski said the study shows that NMDA is crucial for inverse effectiveness in MSI, though it might not be the only receptor at work.

Developing the senses

The research is part of a larger study of multisensory integration in Aizenman's lab. Last year, as part of the same investigation, the researchers found that developing tadpole brains refine their judgment of whether stimuli are truly simultaneous as they progressively change the balance of excitation and inhibition among neurons in the optic tectum.

Aizenman's lab seeks to understand how perception develops early in life, not only as a matter of basic science but also because it could provide insights into human disorders in which sensory processing develops abnormally, as in some forms of autism.

The lab has an autism model in tadpoles. Truszkowski said an interesting next step could be to conduct these experiments with those tadpoles.
-end-
In addition to Trukszkowski and Aizenman, the paper's other authors are Oscar Carillo, Julia Bleier, Carolina Ramirez-Vizcarrondo and Daniel Felch of Brown University; Molly McQuillan and Arseny Khakhalin of Bard College; and Christopher Truzskowski of Roger Williams University.

The National Science Foundation (NSFIOS1353044), National Institutes of Health (F31NS09379001), the American Physiological Society, Brown University and Bard University supported the research.

Brown University

Related Brain Articles:

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
Brain cells called astrocytes have unexpected role in brain 'plasticity'
Researchers from the Salk Institute have shown that astrocytes -- long-overlooked supportive cells in the brain -- help to enable the brain's plasticity, a new role for astrocytes that was not previously known.
Largest brain study of 62,454 scans identifies drivers of brain aging
In the largest known brain imaging study, scientists from Amen Clinics (Costa Mesa, CA), Google, John's Hopkins University, University of California, Los Angeles and the University of California, San Francisco evaluated 62,454 brain SPECT (single photon emission computed tomography) scans of more than 30,000 individuals from 9 months old to 105 years of age to investigate factors that accelerate brain aging.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.