Nav: Home

Fighting malaria through metabolism

March 23, 2017

EPFL scientists have fully modeled the metabolism of the deadliest malaria parasite. The model offers unprecedented tools for developing a new generation of antimalarial therapies to overcome drug resistance.

Many of the malaria parasites develop resistance to drugs. A promising strategy is to target the parasite's metabolism, but it has proven very complicated to connect to their genetics. EPFL scientists have now developed the first ever mathematical model of a malaria parasite that accurately integrates its genetics and metabolism, opening a whole new way of treating the disease. The model is based on the deadliest of the malaria parasites, Plasmodium falciparum, and is published in PLoS Computational Biology.

There have been intensive research efforts to map out and target metabolic enzymes of the Plasmodium parasites. But their metabolism has proven to be versatile and complex, and integrating all existing data on the parasites' genetics to their metabolism is challenging.

A new model of malaria parasites' metabolism

The lab of Vassily Hatzimanikatis at EPFL, with colleagues at Geneva and Bern, has now developed a new mathematical model of the malaria parasite P. falciparum. The model connects the experimental data from both genetics and metabolomics, which is the study of all the metabolic processes of an organism and maps out all of its metabolites.

Malaria parasites infect various cells through their life cycle, displaying different points of vulnerability at each life stage. However, there has not been a comprehensive attempt to investigate the enzymes that are consistently vulnerable.

The scientists studied P. falciparum but instead looked at the way the parasites produce and use energy for their metabolic reactions. This approach can help identify which metabolic functions are essential at each stage of the infection, and which are energetically coupled through key metabolites.

The scientists could therefore model, for the first time, the bioenergetics of the metabolism of P. falciparum, predicting with unprecedented accuracy which genes are indispensable for every biological function in the parasite.

By integrating metabolomics and genetics data, the model reveals the complex interactions between gene products, reactions, and metabolites in the parasite, and identifies potential mechanisms to target with drugs.

"The design of efficient antimalarial drugs that target the parasites and not the patient's metabolism requires an in-depth understanding of the mechanisms that make a particular enzyme essential," says Anush Chiappino-Pepe, the Ph.D. student who carried out the study at Hatzimanikatis' lab. "So mathematical modeling of the parasite's metabolism becomes a very powerful tool."

The EPFL scientists will continue to improve the model with genetics and metabolomics data generated by the MalarX.ch consortium, which involves the University Geneva and Bern, and the Wellcome Trust Sanger Institute. They aim to reveal the mechanisms behind host-pathogen interactions and gain insight into the physiology of the parasite while it is dormant.

This work included a contribution from the University of Geneva (Faculty of Medicine). It was funded by SystemsX.ch (MalarX), the Swiss
-end-
National Science Foundation (SNSF), EPFL and the University of Geneva.

Reference

Anush Chiappino-Pepe, Stepan Tymoshenko, Meriç Ataman, Dominique Soldati-Favre, Vassily Hatzimanikatis. Bioenergetics-based Modeling of Plasmodium falciparum Metabolism Reveals its Essential Genes, Nutritional Requirements, and Thermodynamic Bottlenecks. PLoS Computational Biology 23 March 2017.

Scientific contacts

Professor Vassily Hatzimanikatis (Lead researcher)
Tel. +41 21 69 39870, +41 21 69 39891
vassily.hatzimanikatis@epfl.ch

Anush Chiappino Pepe, EPFL (First author of paper)
Tel. +41 21 69 39869
anush.chiappinopepe@epfl.ch

Press contact

Nik Papageorgiou (EPFL Press Office)
Tel. +41 21 69 32105
n.papageorgiou@epfl.ch

Ecole Polytechnique Fédérale de Lausanne

Related Parasites Articles:

Study shows interactions between bacteria and parasites
A team at the Technical University of Munich (TUM) has completed the first study of the effects of a simultaneous infection with blood flukes (schistosomes) and the bacterium Helicobacter pylori -- a fairly common occurrence in some parts of the world.
Evolution designed by parasites
In 'Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation,' published in the September 2019 issue of The Quarterly Review of Biology, Marco Del Giudice explores an overlooked aspect of the relationship between parasites and their hosts by systematically discussing the ways in which parasitic behavior manipulation may encourage the evolution of mechanisms in the host's nervous and endocrine systems.
Smuggling route for cells protects DNA from parasites
An international research team has now uncovered new insight into how safety mechanisms keep genetic parasites in check so that they do not damage the genome.
Airless worms: A new hope against drug-resistant parasites
Toronto scientists have uncovered a metabolic pathway that only exists in parasitic worms.
Parasites dampen beetle's fight or flight response
Beetles infected with parasitic worms put up less of a fight against simulated attacks from predators and rival males, according to a study by Felicia Ebot-Ojong, Andrew Davis and Elizabeth Jurado at the University of Georgia, USA, publishing May 22, 2019 in the open-access journal PLOS ONE.
Genome structure of malaria parasites linked to virulence
An international research team led by scientists at the University of California, Riverside, and the La Jolla Institute for Immunology has found that malaria parasite genomes are shaped by parasite-specific gene families, and that this genome organization strongly correlates with the parasite's virulence.
Parasites discovered in fossil fly pupae
Parasitic wasps existed as early as several million years ago.
Migratory animals carry more parasites, says study
Every year, billions of animals migrate across the globe, carrying parasites with them and encountering parasites through their travels.
The macabre world of mind-controlling parasites
Many parasites can control the behavior of their hosts -- sometimes in very gruesome ways.
Long incubation times may defend birds against parasites
Some tropical birds have longer egg incubation times than their temperate cousins, even though their habitat is teeming with egg-eating predators.
More Parasites News and Parasites Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab