Nav: Home

Fighting malaria through metabolism

March 23, 2017

EPFL scientists have fully modeled the metabolism of the deadliest malaria parasite. The model offers unprecedented tools for developing a new generation of antimalarial therapies to overcome drug resistance.

Many of the malaria parasites develop resistance to drugs. A promising strategy is to target the parasite's metabolism, but it has proven very complicated to connect to their genetics. EPFL scientists have now developed the first ever mathematical model of a malaria parasite that accurately integrates its genetics and metabolism, opening a whole new way of treating the disease. The model is based on the deadliest of the malaria parasites, Plasmodium falciparum, and is published in PLoS Computational Biology.

There have been intensive research efforts to map out and target metabolic enzymes of the Plasmodium parasites. But their metabolism has proven to be versatile and complex, and integrating all existing data on the parasites' genetics to their metabolism is challenging.

A new model of malaria parasites' metabolism

The lab of Vassily Hatzimanikatis at EPFL, with colleagues at Geneva and Bern, has now developed a new mathematical model of the malaria parasite P. falciparum. The model connects the experimental data from both genetics and metabolomics, which is the study of all the metabolic processes of an organism and maps out all of its metabolites.

Malaria parasites infect various cells through their life cycle, displaying different points of vulnerability at each life stage. However, there has not been a comprehensive attempt to investigate the enzymes that are consistently vulnerable.

The scientists studied P. falciparum but instead looked at the way the parasites produce and use energy for their metabolic reactions. This approach can help identify which metabolic functions are essential at each stage of the infection, and which are energetically coupled through key metabolites.

The scientists could therefore model, for the first time, the bioenergetics of the metabolism of P. falciparum, predicting with unprecedented accuracy which genes are indispensable for every biological function in the parasite.

By integrating metabolomics and genetics data, the model reveals the complex interactions between gene products, reactions, and metabolites in the parasite, and identifies potential mechanisms to target with drugs.

"The design of efficient antimalarial drugs that target the parasites and not the patient's metabolism requires an in-depth understanding of the mechanisms that make a particular enzyme essential," says Anush Chiappino-Pepe, the Ph.D. student who carried out the study at Hatzimanikatis' lab. "So mathematical modeling of the parasite's metabolism becomes a very powerful tool."

The EPFL scientists will continue to improve the model with genetics and metabolomics data generated by the MalarX.ch consortium, which involves the University Geneva and Bern, and the Wellcome Trust Sanger Institute. They aim to reveal the mechanisms behind host-pathogen interactions and gain insight into the physiology of the parasite while it is dormant.

This work included a contribution from the University of Geneva (Faculty of Medicine). It was funded by SystemsX.ch (MalarX), the Swiss
-end-
National Science Foundation (SNSF), EPFL and the University of Geneva.

Reference

Anush Chiappino-Pepe, Stepan Tymoshenko, Meriç Ataman, Dominique Soldati-Favre, Vassily Hatzimanikatis. Bioenergetics-based Modeling of Plasmodium falciparum Metabolism Reveals its Essential Genes, Nutritional Requirements, and Thermodynamic Bottlenecks. PLoS Computational Biology 23 March 2017.

Scientific contacts

Professor Vassily Hatzimanikatis (Lead researcher)
Tel. +41 21 69 39870, +41 21 69 39891
vassily.hatzimanikatis@epfl.ch

Anush Chiappino Pepe, EPFL (First author of paper)
Tel. +41 21 69 39869
anush.chiappinopepe@epfl.ch

Press contact

Nik Papageorgiou (EPFL Press Office)
Tel. +41 21 69 32105
n.papageorgiou@epfl.ch

Ecole Polytechnique Fédérale de Lausanne

Related Parasites Articles:

Study shows interactions between bacteria and parasites
A team at the Technical University of Munich (TUM) has completed the first study of the effects of a simultaneous infection with blood flukes (schistosomes) and the bacterium Helicobacter pylori -- a fairly common occurrence in some parts of the world.
Evolution designed by parasites
In 'Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation,' published in the September 2019 issue of The Quarterly Review of Biology, Marco Del Giudice explores an overlooked aspect of the relationship between parasites and their hosts by systematically discussing the ways in which parasitic behavior manipulation may encourage the evolution of mechanisms in the host's nervous and endocrine systems.
Smuggling route for cells protects DNA from parasites
An international research team has now uncovered new insight into how safety mechanisms keep genetic parasites in check so that they do not damage the genome.
Airless worms: A new hope against drug-resistant parasites
Toronto scientists have uncovered a metabolic pathway that only exists in parasitic worms.
Parasites dampen beetle's fight or flight response
Beetles infected with parasitic worms put up less of a fight against simulated attacks from predators and rival males, according to a study by Felicia Ebot-Ojong, Andrew Davis and Elizabeth Jurado at the University of Georgia, USA, publishing May 22, 2019 in the open-access journal PLOS ONE.
More Parasites News and Parasites Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...