Nav: Home

Fighting malaria through metabolism

March 23, 2017

EPFL scientists have fully modeled the metabolism of the deadliest malaria parasite. The model offers unprecedented tools for developing a new generation of antimalarial therapies to overcome drug resistance.

Many of the malaria parasites develop resistance to drugs. A promising strategy is to target the parasite's metabolism, but it has proven very complicated to connect to their genetics. EPFL scientists have now developed the first ever mathematical model of a malaria parasite that accurately integrates its genetics and metabolism, opening a whole new way of treating the disease. The model is based on the deadliest of the malaria parasites, Plasmodium falciparum, and is published in PLoS Computational Biology.

There have been intensive research efforts to map out and target metabolic enzymes of the Plasmodium parasites. But their metabolism has proven to be versatile and complex, and integrating all existing data on the parasites' genetics to their metabolism is challenging.

A new model of malaria parasites' metabolism

The lab of Vassily Hatzimanikatis at EPFL, with colleagues at Geneva and Bern, has now developed a new mathematical model of the malaria parasite P. falciparum. The model connects the experimental data from both genetics and metabolomics, which is the study of all the metabolic processes of an organism and maps out all of its metabolites.

Malaria parasites infect various cells through their life cycle, displaying different points of vulnerability at each life stage. However, there has not been a comprehensive attempt to investigate the enzymes that are consistently vulnerable.

The scientists studied P. falciparum but instead looked at the way the parasites produce and use energy for their metabolic reactions. This approach can help identify which metabolic functions are essential at each stage of the infection, and which are energetically coupled through key metabolites.

The scientists could therefore model, for the first time, the bioenergetics of the metabolism of P. falciparum, predicting with unprecedented accuracy which genes are indispensable for every biological function in the parasite.

By integrating metabolomics and genetics data, the model reveals the complex interactions between gene products, reactions, and metabolites in the parasite, and identifies potential mechanisms to target with drugs.

"The design of efficient antimalarial drugs that target the parasites and not the patient's metabolism requires an in-depth understanding of the mechanisms that make a particular enzyme essential," says Anush Chiappino-Pepe, the Ph.D. student who carried out the study at Hatzimanikatis' lab. "So mathematical modeling of the parasite's metabolism becomes a very powerful tool."

The EPFL scientists will continue to improve the model with genetics and metabolomics data generated by the MalarX.ch consortium, which involves the University Geneva and Bern, and the Wellcome Trust Sanger Institute. They aim to reveal the mechanisms behind host-pathogen interactions and gain insight into the physiology of the parasite while it is dormant.

This work included a contribution from the University of Geneva (Faculty of Medicine). It was funded by SystemsX.ch (MalarX), the Swiss
-end-
National Science Foundation (SNSF), EPFL and the University of Geneva.

Reference

Anush Chiappino-Pepe, Stepan Tymoshenko, Meriç Ataman, Dominique Soldati-Favre, Vassily Hatzimanikatis. Bioenergetics-based Modeling of Plasmodium falciparum Metabolism Reveals its Essential Genes, Nutritional Requirements, and Thermodynamic Bottlenecks. PLoS Computational Biology 23 March 2017.

Scientific contacts

Professor Vassily Hatzimanikatis (Lead researcher)
Tel. +41 21 69 39870, +41 21 69 39891
vassily.hatzimanikatis@epfl.ch

Anush Chiappino Pepe, EPFL (First author of paper)
Tel. +41 21 69 39869
anush.chiappinopepe@epfl.ch

Press contact

Nik Papageorgiou (EPFL Press Office)
Tel. +41 21 69 32105
n.papageorgiou@epfl.ch

Ecole Polytechnique Fédérale de Lausanne

Related Parasites Articles:

Deciphering plant immunity against parasites
Nematodes are a huge threat to agriculture since they parasitize important crops such as wheat, soybean, and banana; but plants can defend themselves.
Malaria parasites 'walk through walls' to infect humans
Researchers have identified proteins that enable deadly malaria parasites to 'walk through cell walls' -- a superpower that was revealed using the Institute's first insectary to grow human malaria parasites.
Scientists analyze dispersal of parasites by birds in the Americas
An international study investigates transmission of microorganisms that cause malaria and other diseases from migratory to resident avian species.
What's the buzz on bee parasites?
Published today in the open-access journal GigaScience is an article that presents the genome sequence and analysis of the honey bee parasitic mite T. mercedesae.
Major drug initiatives are best way to curb threat from parasites
Large-scale programmes to treat a life-threatening disease could improve the health of millions despite concerns about their long-term effects, a study suggests.
Promoting parasites
Hiroshima University scientists have identified a new species of parasite infecting an invasive freshwater fish on the subtropical island of Okinawa, Japan.
Sunflower pollen protects bees from parasites
Solitary mason bees specializing on sunflower pollen were not attacked by a common brood-parasitic wasp, which lays eggs in the nests, where its larvae kill bee eggs and eat their pollen provisions.
Trouble with parasites? Just migrate!
The researchers developed a model to explore whether combating infection could, in theory, be a potential benefit of migration.
Bird genomes contain 'fossils' of parasites that now infect humans
In rare instances, DNA is known to have jumped from one species to another.
Common pesticides kill amphibian parasites, study finds
A recent study by Jessica Hua, assistant professor of biological sciences at Binghamton University, and colleagues, explored the effects of six commonly used pesticides on two different populations of a widespread parasite of amphibians.

Related Parasites Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".