Nav: Home

New portal to unveil the dark sector of the universe

March 23, 2017

Once upon a time, the Universe was just a hot soup of particles. In those days, together with visible particles, other particles to us hidden or dark might have formed. Billions of years later scientists catalogued 17 types of visible particles, with the most recent one being the Higgs boson, creating the 'Standard Model'. However, they are still struggling to detect the hidden particles, the ones that constitute the dark sector of the Universe.

Scientists at the Center for Theoretical Physics of the Universe, within the Institute for Basic Science (IBS) have proposed a hypothetical portal that connects two possible dark sector particles; their research could open a new perspective into the murky understanding of the dark sector. Published in Physical Review Letters, this study has implications in cosmology and astroparticle physics.

Physicists have plenty of ideas about what these dark sector particles might look like. One candidate is the axion, which is a very light particle that can solve some theoretical problems of the Standard Model. Another candidate is the dark photon: A very light particle which shares some properties with one of the particles of the Standard Model, that is the photon, the constituent of visible light. However, while photons couple to the electromagnetic charge, dark photons couple to the so-called dark charge, that might be carried by other dark sector particles.

Physicists believe that the dark sector communicates with the Standard Model, via portals. For example, a vector portal would allow the mixing between photons and dark photons. And, an axion portal connects axions and photons. There are only several possible portals physicists have identified, and each portal is a major tool in theoretical and experimental studies in searching for dark sector particles. A team of IBS scientists, hypothesized the existence of a new portal they named the "dark axion portal" that connects dark photons and axions.

The central idea of the dark axion portal is based on the observation that new heavy quarks may also have a dark charge that couples to the dark photon. Through the heavy quarks, axion, photon, and dark photon can interact with each other.

IBS scientists imagine that the dark axion portal could bring ideas for new experiments. So far, the axion search has been performed using only the axion portal, which connects the axion to a pair of photons (axion--photon--photon coupling). Similarly, the dark photon search has been performed using a different portal, namely a vector portal, which allows a small mixing between the dark photon and photon. The dark axion portal could link the two: "The dark axion portal suggests the first meaningful connection between the two physics, which have been studied separately: It connects the dots. This will allow reinterpretation of the previous data, and potentially make a breakthrough in the axion and dark photon searches," explains LEE Hye-Sung, corresponding author of the paper.

Institute for Basic Science

Related Photons Articles:

Quantum physics: Ménage à trois photon-style
When two photons become entangled, the quantum state of the first will correlate perfectly with the quantum state of the second.
Converting absorbed photons into twice as many excitons: Successful high-efficiency energy conversion with organic monolayer on gold nanocluster surface
A group of researchers from Kobe and Keio universities found that when light was exposed to the surface of a tetracene alkanethiol-modified gold nanocluster, which they developed themselves, twice as many excitons could be converted compared to the number of photons absorbed by the tetracene molecules.
Illinois researchers create first three-photon color-entangled W state
Researchers at the University of Illinois at Urbana-Champaign have constructed a quantum-mechanical state in which the colors of three photons are entangled with each other.
Robert Alfano team identifies new 'Majorana Photons'
Hailed as a pioneer by Photonics Media for his previous discoveries of supercontinuum and Cr tunable lasers, City College of New York Distinguished Professor of Science and Engineering Robert R.
Dresden physicists use nanostructures to free photons for highly efficient white OLEDs
Thanks to intensive research in the past three decades, organic light-emitting diodes (OLEDs) have been steadily conquering the electronics market -- from OLED mobile phone displays to roll-out television screens, the list of applications is long.
Generating high-quality single photons for quantum computing
MIT researchers have designed a way to generate, at room temperature, more single photons for carrying quantum information.
Photons trained for optical fibre obstacle course will deliver stronger cyber security
Researchers from the NUS-Singtel Cyber Security Research & Development Laboratory demonstrate a way to improve quantum key distribution over fiber networks.
Researchers pinpoint origin of photons in mysterious gamma-ray bursts
Scientists from the RIKEN Cluster for Pioneering Research and collaborators have used simulations to show that the photons emitted by long gamma-ray bursts -- one of the most energetic events to take place in the universe -- originate in the photosphere -- the visible portion of the 'relativistic jet' that is emitted by exploding stars.
Entangling photons of different colors
Researchers at the National Institute of Standards and Technology (NIST) have developed a novel way to entangle two photons--one with a wavelength suitable for quantum-computing devices and the other for fiber-optics transmissions.
Quantum dots can spit out clone-like photons
MIT and ETH Zurich researchers have produced coherent single photon emitters, a key component for future quantum computers and communications systems.
More Photons News and Photons Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.