Nav: Home

Mass. General team identifies mechanisms behind resistance to FGFR inhibitor drug

March 23, 2017

Investigators at the Massachusetts General Hospital (MGH) Cancer Center have identified the first genetic mechanisms conferring acquired resistance to a promising group of targeted cancer drugs. In a paper appearing in the March issue of Cancer Discovery, the researchers describe finding novel resistance mechanisms in three patients receiving fibroblast growth factor receptor (FGFR) inhibitor treatment for a type of liver cancer. While many patients show impressive responses to this treatment, the appearance of new drug-resistant mutations in the FGFR gene as tumors progress- and even several different mutations within samples from individual patients - suggests the need for drugs that block multiple pathways to avoid the resumption of tumor progression.

"FGFR represents an important therapeutic target in many cancers," says lead author Lipika Goyal, MD, MPhil, of the MGH Cancer Center. "Our findings may inform future strategies for detecting resistance mechanisms and inducing more durable responses in FGFR2 fusion-positive intrahepatic cholangiocarcinoma and possibly other cancers in which the FGFR pathway is being explored as a therapeutic target."

Cancers driven by mutations that activate FGFR include certain tumors of the lung, breast, stomach and bladder. From 10 to 20 percent of cases of intrahepatic cholangiocarcinoma (ICC) - the second most common tumor originating in the liver - are thought to be driven by FGFR2 fusion mutations. An FGFR inhibitor called BGJ398 is currently in a phase 2 clinical trial for treatment of advanced ICC patients whose FGFR-driven cancers progressed after chemotherapy, and while preliminary data from the trial reported a significant response to treatment, as with most targeted therapies, resistance inevitably develops.

The MGH team analyzed samples from three patients with FGFR2 fusion-positive ICC enrolled in the BGJ398 trial for whom treatment led to a 30 to 50 percent tumor reduction, followed by disease progression after four to eight months. Analysis of cell-free DNA (cfDNA) from blood samples taken before BGJ398 treatment and after tumor progression revealed that one to five new FGFR2 kinase domain mutations had developed in each patient. A common mutation that emerged in all three patients was FGFR2 V564F, a gatekeeper mutation which interferes with the binding of BGJ398 to the FGFR. The other mutations altered the conformation of FGFR2, leading to continuous signaling through the pathway.

Rapid autopsy samples from one patient who died after having disease progression on BGJ398 treatment revealed that different metastases harbored distinct FGFR2 mutations, thus demonstrating that multiple different mechanisms can confer resistance in individual patients. Treating BGJ398-resistant cell lines with several other FGFR inhibitors showed that other structurally distinct drugs in the same class may be able to overcome FGFR2 resistance mutations.

"As seen with the development of resistance to other targeted treatment drugs, the mechanisms we identified are heterogeneous, and different therapeutic approaches may be necessary to overcome those resistance mechanisms," says senior and co-corresponding author Andrew X. Zhu, MD, PhD, director of Liver Cancer Research at the MGH Cancer Center. "In addition to helping us understand why patients developed tumor progression within months of beginning a rationally chosen targeted therapy, our findings also suggest that tumor biopsies may underestimate resistance mechanisms. Repeat analysis of cfDNA may provide a more comprehensive picture of the mechanisms at play."
-end-
Goyal is an instructor and Zhu is a professor of Medicine at Harvard Medical School. Additional co-authors of the Cancer Discovery paper include Ryan Corcoran, MD, PhD, Supriya Saha, MD, PhD, Leah Liu, PhD, Dejan Juric, MD, and Nabeel Bardeesy, PhD, of the MGH Cancer Center. Funding for this research was provided by the Cholangiocarcinoma Foundation, TargetCancer Foundation, the MGH Executive Committee on Research Fund for Medical Discovery Award, the National Institutes of Health/National Cancer Institute Gastrointestinal Cancer SPORE, The V Foundation for Cancer Research, and the Jonathan Kraft Translational Award, among others.

Massachusetts General Hospital, founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH Research Institute conducts the largest hospital-based research program in the nation, with an annual research budget of more than $800 million and major research centers in HIV/AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, photomedicine and transplantation biology. The MGH topped the 2015 Nature Index list of health care organizations publishing in leading scientific journals and earned the prestigious 2015 Foster G. McGaw Prize for Excellence in Community Service. In August 2016 the MGH was once again named to the Honor Roll in the U.S. News & World Report list of "America's Best Hospitals."

Massachusetts General Hospital

Related Liver Cancer Articles:

A new treatment for liver cancer
In the latest issue of Molecular Therapy, Skoltech and MIT researchers have published a new combinatorial therapy for the treatment of liver cancer.
New study indicates exercise can help prevent liver cancer
Liver cancer is the fourth most common cause of cancer death worldwide and is growing rapidly due to the 'diabesity pandemic.' A new study reported in the Journal of Hepatology, published by Elsevier, provides strong evidence that voluntary exercise could help prevent the most common type of liver cancer, hepatocellular carcinoma, and identifies the molecular signaling pathways involved.
From obesity to liver cancer: Can we prevent the worst?
Hepatocellular carcinoma, a liver cancer linked to the presence of fat in the liver, is one of the leading causes of cancer death worldwide.
Liver cancer deaths climb by around 50% in the last decade
Liver cancer deaths have increased by around 50% in the last decade and have tripled since records began, according to the latest calculations by Cancer Research UK.
NUS researchers show potential liver cancer treatment by targeting cancer stem-like cells
NUS researchers from the Cancer Science Institute of Singapore and the N.1 Institute for Health have shown the potential use of small molecule inhibitors to treat advanced liver cancer.
Breast cancer gene a potential target for childhood liver cancer treatment
Hepatoblastoma is a rare liver cancer that mainly affects infants and young children and is associated with mutations in the β-catenin gene.
Blood transfusion during liver cancer surgery linked with higher risk of cancer recurrence and death
Receiving a blood transfusion during curative surgery for the most common type of liver cancer (hepatocellular carcinoma) is associated with a much higher risk of cancer recurrence and dying prematurely, according to new research being presented at this year's Euroanaesthesia congress.
Blocking platelets: A possible option to prevent fatty liver disease and liver cancer
Blood platelets which interact with liver cells and immune cells play a major role in the development of fatty liver disease, non-alcoholic fatty liver inflammation and liver cancer, scientists from the German Cancer Research Center (DKFZ) in Heidelberg and from Zurich University and University Hospital have now shown in a publication.
Cancer most frequently spreads to the liver; here's why
When cancer spreads to another organ, it most commonly moves to the liver, and now researchers at the Abramson Cancer Center of the University of Pennsylvania say they know why.
Liver transplants double for alcohol-related liver disease
The proportion of US liver transplants for alcohol-associated liver disease (ALD) has doubled in the last 15 years, in part due to broader acceptance of waiving the mandated period of sobriety before transplants for this population, according to a study by researchers at UC San Francisco, which showed ongoing regional geographic variations in liver transplant rates for ALD patients, whose long-term survival rate is slightly lower than other liver transplant patients.
More Liver Cancer News and Liver Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.