Nav: Home

Printable device points toward sensor-laden robot skin

March 23, 2017

In this age of smartphones and tablet computers, touch-sensitive surfaces are everywhere. They're also brittle, as people with cracked phone screens everywhere can attest.

Covering a robot -- or an airplane or a bridge -- with sensors will require a technology that is both flexible and cost-effective to manufacture in bulk. A team of researchers at MIT's Computer Science and Artificial Intelligence Laboratory thinks that 3-D printing could be the answer.

In an attempt to demonstrate the feasibility of flexible, printable electronics that combine sensors and processing circuitry and can act on their environments, the researchers have designed and built a device that responds to mechanical stresses by changing the color of a spot on its surface.

The device was inspired by the golden tortoise beetle, or "goldbug," an insect whose exterior usually appears golden but turns reddish orange if the insect is poked or prodded -- that is, mechanically stressed.

"In nature, networks of sensors and interconnects are called sensorimotor pathways," says Subramanian Sundaram, an MIT graduate student in electrical engineering and computer science (EECS), who led the project. "We were trying to see whether we could replicate sensorimotor pathways inside a 3-D-printed object. So we considered the simplest organism we could find."

The researchers present their new design in the latest issue of the journal Advanced Materials Technologies. Sundaram is the first author on the paper, and the senior authors are Sundaram's advisor, Wojciech Matusik, an associate professor of EECS; and Marc Baldo, a professor of EECS and director of the Research Laboratory of Electronics. Joining them on the paper are Pitchaya Sitthi-Amorn, a former postdoc in Matusik's lab; Ziwen Jiang, an undergraduate EECS student; and David Kim, a technical assistant in Matusik's Computational Fabrication Group.

Bottom up

Printable electronics, in which flexible circuitry is deposited on some type of plastic substrate, has been a major area of research for decades. But Sundaram says that the ability to print the substrate itself greatly increases the range of devices the technique can yield.

For one thing, the choice of substrate limits the types of materials that can be deposited on top of it. Because a printed substrate could consist of many materials, interlocked in intricate but regular patterns, it broadens the range of functional materials that printable electronics can use.

Printed substrates also open the possibility of devices that, although printed as flat sheets, can fold themselves up into more complex, three-dimensional shapes. Printable robots that spontaneously self-assemble when heated, for instance, are a topic of ongoing research at the CSAIL Distributed Robotics Laboratory, led by Daniela Rus, the Andrew and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT.

"We believe that only if you're able to print the underlying substrate can you begin to think about printing a more complex shape," Sundaram says.

Selective signaling

The MIT researchers' new device is approximately T-shaped, but with a wide, squat base and an elongated crossbar. The crossbar is made from an elastic plastic, with a strip of silver running its length; in the researchers' experiments, electrodes were connected to the crossbar's ends. The base of the T is made from a more rigid plastic. It includes two printed transistors and what the researchers call a "pixel," a circle of semiconducting polymer whose color changes when the crossbars stretch, modifying the electrical resistance of the silver strip.

In fact, the transistors and the pixel are made from the same material; the transistors also change color slightly when the crossbars stretch. The effect is more dramatic in the pixel, however, because the transistors amplify the electrical signal from the crossbar. Demonstrating working transistors was essential, Sundaram says, because large, dense sensor arrays require some capacity for onboard signal processing.

"You wouldn't want to connect all the sensors to your main computer, because then you would have tons of data coming in," he says. "You want to be able to make clever connections and to select just the relevant signals."

To build the device, the researchers used the MultiFab, a custom 3-D printer developed by Matusik's group. The MultiFab already included two different "print heads," one for emitting hot materials and one for cool, and an array of ultraviolet light-emitting diodes. Using ultraviolet radiation to "cure" fluids deposited by the print heads produces the device's substrate.

Sundaram added a copper-and-ceramic heater, which was necessary to deposit the semiconducting plastic: The plastic is suspended in a fluid that's sprayed onto the device surface, and the heater evaporates the fluid, leaving behind a layer of plastic only 200 nanometers thick.

Fluid boundaries

A transistor consists of semiconductor channel on top of which sits a "gate," a metal wire that, when charged, generates an electric field that switches the semiconductor between its electrically conductive and nonconductive states. In a standard transistor, there's an insulator between the gate and the semiconductor, to prevent the gate current from leaking into the semiconductor channel.

The transistors in the MIT researchers' device instead separate the gate and the semiconductor with a layer of water containing a potassium salt. Charging the gate drives potassium ions into the semiconductor, changing its conductivity.

The layer of saltwater lowers the device's operational voltage, so that it can be powered with an ordinary 1.5-volt battery. But it does render the device less durable. "I think we can probably get it to work stably for two months, maybe," Sundaram says. "One option is to replace that liquid with something between a solid and a liquid, like a hydrogel, perhaps. But that's something we would work on later. This is an initial demonstration."
-end-
Additional background

Paper: 3D-Printed Autonomous Sensory Composites

ARCHIVE: Stretchable hydrogel electronics

ARCHIVE: Customizing 3-D printing

ARCHIVE: "MultiFab" 3-D prints a record 10 materials at once, no assembly required

Massachusetts Institute of Technology

Related Semiconductor Articles:

Scientists see defects in potential new semiconductor
A research team has reported seeing, for the first time, atomic scale defects that dictate the properties of a new and powerful semiconductor.
Bending an organic semiconductor can boost electrical flow
Slightly bending semiconductors made of organic materials can roughly double the speed of electricity flowing through them and could benefit next-generation electronics such as sensors and solar cells, according to Rutgers-led research.
Paving a way to achieve unexplored semiconductor nanostructures
A research team of Ehime University paved a way to achieve unexplored III-V semiconductor nanostructures.
Clarification of a new synthesis mechanism of semiconductor atomic sheet
Researchers at Tohoku University in Japan succeeded in clarifying a new synthesis mechanism regarding transition metal dichalcogenides (TMD), which are semiconductor atomic sheets having thickness in atomic order.
Future of portable electronics -- Novel organic semiconductor with exciting properties
Organic semiconductors have advantages over inorganic semiconductors in several areas.
A new method for quantifying crystal semiconductor efficiency
Japanese scientists have found a new way to successfully detect the efficiency of crystal semiconductors.
X-rays reveal monolayer phase in organic semiconductor
An international team of researchers has investigated how the electrical properties of dihexyl-quarterthiophene thin films depend on their structure.
Atomic 'patchwork' using heteroepitaxy for next generation semiconductor devices
Researchers from Tokyo Metropolitan University have grown atomically thin crystalline layers of transition metal dichalcogenides (TMDCs) with varying composition over space, continuously feeding in different types of TMDC to a growth chamber to tailor changes in properties.
Tuning into the LCDs of tomorrow: Exploring the novel IGZO-11 semiconductor
Indium-gallium-zinc oxide ceramics are used as the backplane for flat-panel displays, this was made possible through substantial synergistic contributions coming from the powerhouse that is Japan.
Probing semiconductor crystals with a sphere of light
Tohoku University researchers have developed a technique using a hollow sphere to measure the electronic and optical properties of large semiconducting crystals.
More Semiconductor News and Semiconductor Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab