Nav: Home

MSU lands NIH grant to study connection between fish genes and human medicine

March 23, 2017

EAST LANSING, Mich. - Michigan State University has landed a $727,000 grant from the National Institutes of Health to improve the use of fish as disease models for human medicine.

Ingo Braasch, MSU integrative biologist who's leading the MSU efforts of this collaborative grant that also includes the University of Oregon and Nicholls State University (Louisiana), will focus on the spotted gar, which has a similar genome to humans and zebrafish, a popular biomedical fish model. The ancient, slowly evolving spotted gar can serve as a "bridge species" between human and zebrafish, thereby opening pathways to important advancements in human biomedical research.

"There are potentially thousands of connections that can be made from human to zebrafish and back through gar as a steppingstone that could not be done by comparing human and zebrafish directly," Braasch said. "This points to a better way to perform biomedical research for studying human disease in zebrafish. With higher precision, researchers will be able to find the right region in the genome of zebrafish to design experiments and mutation models."

Genome-wide association studies, or GWAS, have detected thousands of genetic variations near hundreds of genes associated with numerous human diseases. The problem is that scientists don't know which gene near a GWAS region in the human genome may cause the disease. Comparative medicine, using rearranged genomes of fish models to test hypotheses, can help locate those troublesome intersections and lead to personalized approaches to investigate and potentially treat those diseases.

Zebrafish are often used as model fish in biomedical research, but due to their genetic divergence from humans it can be difficult to make direct biological comparisons.

Braasch believes the spotted gar can help biomedical researchers make the jump. He hopes to develop additional resources to help identify disease-associated genetic region in humans. In turn, researchers can then locate the corresponding region in spotted gar and then investigate the appropriate location in the genomes of zebrafish or other fish models.

Yes, but what makes gar so special?

First, ever since the fish and human lineages split about 450 million years ago, the gar genome has not changed as much as that of more modern fish like zebrafish. Second, gars also offer a window into the evolution of vertebrate anatomy because their body plan has not changed as much as those of modern fish. Gar helps to understand how fins evolved into limbs that allowed fish to walk on land and how enamel on our teeth evolved from ancient types of fish scales, which are still found in gar.

"We are using gar to further improve comparisons of humans to zebrafish to make zebrafish an even better model system for disease research," Braasch said. "And by studying gar, zebrafish and other fishes side-by-side, we also hope to answer many more evolutionary questions about the origin of vertebrate genomes and their biology."
Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

For MSU news on the Web, go to MSUToday. Follow MSU News on Twitter at

Michigan State University

Related Genome Articles:

A close look into the barley genome
An international consortium, with the participation of the Helmholtz Zentrum München, Plant Genome and Systems Biology Department (PGSB), has published methodologically significant data on the barley genome.
Barley genome sequenced
Looking for a better beer or single malt Scotch whiskey?
From Genome Research: Pathogen demonstrates genome flexibility in cystic fibrosis
Chronic lung infections can be devastating for patients with cystic fibrosis (CF), and infection by Burkholderia cenocepacia, one of the most common species found in cystic fibrosis patients, is often antibiotic resistant.
A three-dimensional map of the genome
Cells face a daunting task. They have to neatly pack a several meter-long thread of genetic material into a nucleus that measures only five micrometers across.
Rhino genome results
A study by San Diego Zoo Global reveals that the prospects for recovery of the critically endangered northern white rhinoceros -- of which only three individuals remain -- will reside with the genetic resources that have been banked at San Diego Zoo Global's Frozen Zoo®.
Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Genome: It's all about architecture
How do pathogens such as bacteria or parasites manage to hide from their host's immune system?
Accelerating genome analysis
An international team of scientists, led by researchers from A*STAR's Genome Institute of Singapore and the Bioinformatics Institute, have developed SIFT 4G (SIFT for Genomes) -- a software that can lead to faster genome analysis.
Packaging and unpacking of the genome
Single-cell techniques have been used to investigate histone replacement and chromatin remodeling in developing oocytes.
The astounding genome of the dinoflagellate
Dinoflagellates live free-floating in the ocean or symbiotically with corals, serving up -- or as -- lunch to a host of mollusks, tiny fish and coral species.

Related Genome Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.