Nav: Home

Fighting malaria through mathematical analysis of parasite's metabolism

March 23, 2017

A new mathematical model, based on the deadliest malaria parasite, Plasmodium falciparum, could help develop antimalarials by identifying key metabolic targets, according to a study published in PLOS Computational Biology by Vassily Hatzimanikatis at École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, and colleagues.

Malaria, a mosquito-borne infectious disease caused by parasites of the Plasmodium genus, is becoming increasingly difficult to treat as the parasites develop resistance to current drugs. A promising new strategy is to target the parasites' metabolism, but it has proven to be both versatile and complex, making it difficult to target. It has also been difficult to integrate existing experimental data on the metabolism with genetic data on the genome sequence, gene expression, and essential genes for growth.

To overcome these obstacles, the authors of the present study developed a model that accurately connects experimental information from both genetics and metabolomics. They looked at the thermodynamic properties of the metabolic reactions, which relate to the way the parasites use and produce energy. This focus on the energetics of the reactions allows them to analyse, for the first time, which metabolic functions are thermodynamically coupled and are essential during infection. It reveals complex interactions between the parasites' genes and metabolism, which, the authors state, could identify potential mechanisms to target with drugs.

"The model integrates all available knowledge on the genetics and metabolism of the parasites and allows the formulation of testable hypotheses behind the parasite's essential functions," says Dr. Hatzimanikatis. "Ultimately, it can accelerate the discovery toward novel antimalarial drug targets."

The EPFL scientists will now continue to calibrate and improve the predictive capabilities of the model with additional genetics and metabolomics data provided by collaborators from the MalarX.ch consortium in the University of Geneva and Bern and the Wellcome Trust Sanger Institute. They hope to reveal the mechanisms behind host-pathogen interactions and gain insight into the physiology of the parasite while it is dormant.

This press release is based on text provided by the authors.

-end-

In your coverage please use this URL to provide access to the freely available article in PLOS Computational Biology: http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005397

Citation: Chiappino-Pepe A, Tymoshenko S, Ataman M, Soldati-Favre D, Hatzimanikatis V (2017) Bioenergetics-based modeling of Plasmodium falciparum metabolism reveals its essential genes, nutritional requirements, and thermodynamic bottlenecks. PLoS Comput Biol 13 (3): e1005397. doi:10.1371/journal.pcbi.1005397

Funding: VH, DSF, ACP, ST, and MA are supported by the RTD grants MalarX and MicroScapesX within SystemsX.ch, the Swiss Initiative for Systems Biology evaluated by the Swiss National Science Foundation: http://www.systemsx.ch/index.php?id=276&L=3 and http://www.systemsx.ch/index.php?id=277&L=3. VH, ACP, ST and MA are supported by the Ecole Polytechnique Federale de Lausanne. DSF is supported by the University of Geneva. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Malaria Articles:

Could there be a 'social vaccine' for malaria?
Malaria is a global killer and a world health concern.
Transgenic plants against malaria
Scientists have discovered a gene that allows to double the production of artemisinin in the Artemisia annua plant.
Fighting malaria through metabolism
EPFL scientists have fully modeled the metabolism of the deadliest malaria parasite.
Should we commit to eradicate malaria worldwide?
Should we commit to eradicate malaria worldwide, asks a debate article published by The BMJ today?
Investigational malaria vaccine shows considerable protection in adults in malaria season
An investigational malaria vaccine given intravenously was well-tolerated and protected a significant proportion of healthy adults against infection with Plasmodium falciparum malaria -- the deadliest form of the disease -- for the duration of the malaria season, according to new findings published in the Feb.
Why malaria mosquitoes like people with malaria
Malaria mosquitoes prefer to feed -- and feed more -- on blood from people infected with malaria.
Malaria superbugs threaten global malaria control
A lineage of multidrug resistant P. falciparum malaria superbugs has widely spread and is now established in parts of Thailand, Laos and Cambodia, causing high treatment failure rates for the main falciparum malaria medicines, artemisinin combination therapies (ACTs), according to a study published today in The Lancet Infectious Diseases.
Considering cattle could help eliminate malaria in India
The goal of eliminating malaria in countries like India could be more achievable if mosquito-control efforts take into account the relationship between mosquitoes and cattle, according to an international team of researchers.
Seasonal malaria chemoprevention in Senegalese children lowers overall malaria burden
Giving preventive antimalarial drugs to children up to age 10 during active malaria season reduced the cases of malaria in that age group and lowered the malaria incidence in adults, according to a randomized trial carried out in Senegal and published in PLOS Medicine by researchers from the Université Cheikh Anta Diop, Senegal, the London School of Hygiene & Tropical Medicine, UK, and other collaborators.
How malaria fools our immune system
OIST researchers reconstruct the 3-D structure of a malaria protein in combination with human antibodies.

Best Science Podcasts 2017

We have hand picked the best science podcasts for 2017. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: Radiolab

Oliver Sipple
One morning, Oliver Sipple went out for a walk. A couple hours later, to his own surprise, he saved the life of the President of the United States. But in the days that followed, Sipple's split-second act of heroism turned into a rationale for making his personal life into political opportunity. What happens next makes us wonder what a moment, or a movement, or a whole society can demand of one person. And how much is too much?  Through newly unearthed archival tape, we hear Sipple himself grapple with some of the most vexing topics of his day and ours - privacy, identity, the freedom of the press - not to mention the bonds of family and friendship.  Reported by Latif Nasser and Tracie Hunte. Produced by Matt Kielty, Annie McEwen, Latif Nasser and Tracie Hunte. Special thanks to Jerry Pritikin, Michael Yamashita, Stan Smith, Duffy Jennings; Ann Dolan, Megan Filly and Ginale Harris at the Superior Court of San Francisco; Leah Gracik, Karyn Hunt, Jesse Hamlin, The San Francisco Bay Area Television Archive, Mike Amico, Jennifer Vanasco and Joey Plaster. Support Radiolab today at Radiolab.org/donate.
Now Playing: TED Radio Hour

Future Consequences
From data collection to gene editing to AI, what we once considered science fiction is now becoming reality. This hour, TED speakers explore the future consequences of our present actions. Guests include designer Anab Jain, futurist Juan Enriquez, biologist Paul Knoepfler, and neuroscientist and philosopher Sam Harris.