Nav: Home

Artificial photosynthesis steps into the light

March 23, 2017

HOUSTON - (March 23, 2017) - Rice University scientists have created an efficient, simple-to-manufacture oxygen-evolution catalyst that pairs well with semiconductors for solar water splitting, the conversion of solar energy to chemical energy in the form of hydrogen and oxygen.

The lab of Kenton Whitmire, a Rice professor of chemistry, teamed up with researchers at the University of Houston and discovered that growing a layer of an active catalyst directly on the surface of a light-absorbing nanorod array produced an artificial photosynthesis material that could split water at the full theoretical potential of the light-absorbing semiconductor with sunlight.

An oxygen-evolution catalyst splits water into hydrogen and oxygen. Finding a clean renewable source of hydrogen fuel is the focus of extensive research, but the technology has not yet been commercialized.

The Rice team came up with a way to combine three of the most abundant metals -- iron, manganese and phosphorus -- into a precursor that can be deposited directly onto any substrate without damaging it.

To demonstrate the material, the lab placed the precursor into its custom chemical vapor deposition (CVD) furnace and used it to coat an array of light-absorbing, semiconducting titanium dioxide nanorods. The combined material, called a photoanode, showed excellent stability while reaching a current density of 10 milliamps per square centimeter, the researchers reported.

The results appear in two new studies. The first, on the creation of the films, appears in Chemistry: A European Journal. The second, which details the creation of photoanodes, appears in ACS Nano.

Whitmire said the catalyst is grown from a molecular precursor designed to produce it upon decomposition, and the process is scalable. The Rice lab combined iron, manganese and phosphorus (FeMnP) into a molecule that converts to a gas when vacuum is applied. When this gas encounters a hot surface via CVD, it decomposes to coat a surface with the FeMnP catalyst.

The researchers claim their film is "the first heterobimetallic phosphide thin film" created from iron, manganese and phosphorus that starts out as a single precursor. The resulting films contain stable hexagonal arrays of atoms that, until now, had only been seen at temperatures above 1,200 degrees Celsius. The Rice films were created at 350 degrees C in 30 minutes.

"Temperatures above 1,200 C destroy the semiconductor array," Whitmire said. "But these films can be made at low temperatures, allowing them to evenly coat and interact with the photo absorber and create a hybrid electrode."

The researchers coated the three-dimensional arrays of titanium dioxide nanorods with the metallic-looking film. The composite material showed potential as a high-surface-area semiconductor for photoelectrochemical cells.

Growing the transition metal coating directly onto the nanorods allows for maximum contact between the two, Whitmire said. "That metallic, conductive interface between the semiconductor and the active catalytic surface is key to the way this device works," he said.

The film also has ferromagnetic properties, in which the atoms' magnetic moments align in the same direction. The film has a low Curie temperature, the temperature at which some materials' magnetic properties need to be induced. That could be useful for magnetic refrigeration, the researchers said.

Having established their technique, Whitmire said it will now be much easier to investigate hybrid catalysts for many applications, including petrochemical production, energy conversion and refrigeration.

"It seems like when it rains, it pours," he said. "We spent a very long time putting everything together, and now all of a sudden there are too many things to do."
-end-
Rice postdoctoral researcher Andrew Leitner is lead author of the Chemistry: A European Journal paper. Co-authors are graduate students Desmond Schipper and Binod Kumar Rai; former postdoctoral researcher Jing-Han Chen; graduate alumnus Adam Colson, now an assistant professor of chemistry at Boise State University; and Emilia Morosan, a professor of physics and astronomy, of chemistry and of materials science and nanoengineering, all at Rice; and Irene Rusakova, a senior research scientist at the University of Houston.

Schipper and Zhenhuan Zhao, a postdoctoral fellow at the University of Houston, are lead authors of the ACS Nano paper. Co-authors are Leitner and University of Houston graduate students Fan Qin, Zhiming Wang, Kamrul Alam and Shuo Chen; undergraduate student Lixin Xie, research professor Dezhi Wang; Zhifeng Ren, the MD Anderson Chair Professor; and Jiming Bao, an associate professor of electrical and computer engineering.

The National Science Foundation, the Robert A. Welch Foundation, the Gordon and Betty Moore Foundation and Rice University supported the research.

Read the Chemistry abstract at http://onlinelibrary.wiley.com/doi/10.1002/chem.201700203/full.

Read the ACS Nano abstract at http://pubs.acs.org/doi/abs/10.1021/acsnano.7b00704

This news release can be found online at http://news.rice.edu/2017/03/23/artificial-photosynthesis-steps-into-the-light/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

The Whitmire Research Group: wrg.rice.edu/Whitmire_Research_Group/Home.html

Rice Department of Chemistry: chemistry.rice.edu

Images for download:

http://news.rice.edu/files/2017/03/0327_ANODE-1-WEB-1b1w00p.jpg

Scientists at Rice University and the University of Houston created a catalyst from three elements - iron, manganese and phosphorus -- and then coated it evenly onto an array of titanium dioxide nanorods to create a highly efficient photoanode for artificial photosynthesis. (Credit: Whitmire Research Group/Rice University)

http://news.rice.edu/files/2017/03/0327_ANODE-2-WEB-1huorud.jpg

A photo shows an array of titanium dioxide nanorods with an even coating of an iron, manganese and phosphorus catalyst. The combination developed by scientists at Rice University and the University of Houston is a highly efficient photoanode for artificial photosynthesis. (Credit: Whitmire Research Group/Rice University)

http://news.rice.edu/files/2017/03/0327_ANODE-3-WEB-1noakbu.jpg

Rice University postdoctoral researcher Andrew Leitner prepares an oxygen-evolution catalyst. When evenly applied to a semiconductor, the film catalyzes solar water splitting for energy production and other applications. (Credit: Jeff Fitlow/Rice University)

http://news.rice.edu/files/2017/03/0327_ANODE-4-WEB-vym949.jpg

Rice University graduate student Desmond Schipper holds a sample precursor used to make catalysts via chemical vapor deposition. The resulting thin films are made at relatively low temperatures that do not damage the substrate. (Credit: Jeff Fitlow/Rice University)

http://news.rice.edu/files/2017/03/0327_ANODE-5-WEB-sajj7a.jpg

Rice University researchers, working with colleagues at the University of Houston, have developed an efficient, simple-to-manufacture oxygen-evolution catalyst that pairs well with semiconductors for advanced solar cells. From left: graduate student Desmond Schipper, postdoctoral researcher Andrew Leitner and Professor Kenton Whitmire. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Rice University

Related Hydrogen Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Hydrogen bonds directly detected for the first time
For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
From theory to reality: The creation of metallic hydrogen
For more than 80 years, it has been predicted that hydrogen will adopt metallic properties under certain conditions, and now researchers have successfully demonstrated this phenomenon.
Artificial leaf goes more efficient for hydrogen generation
A new study, affiliated with Ulsan National Institute of Science and Technology has introduced a new artificial leaf that generates hydrogen, using the power of the Sun to mimic underwater photosynthesis.
Hydrogen from sunlight -- but as a dark reaction
The storage of photogenerated electric energy and its release on demand are still among the main obstacles in artificial photosynthesis.
New process produces hydrogen at much lower temperature
Waseda University researchers have developed a new method for producing hydrogen, which is fast, irreversible, and takes place at much lower temperature using less energy.
Hydrogen in your pocket? New plastic for carrying and storing hydrogen
A Waseda University research group has developed a polymer which can store hydrogen in a light, compact and flexible sheet, and is safe to touch even when filled with hydrogen gas.

Related Hydrogen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...