Nav: Home

Isotopic makeup of atmospheric sulfate and nitrate

March 23, 2017

Oxygen has three stable isotopes (16O, 17O and 18O). Enrichment of 17O relative to the dominant 16O is normally about half of that of 18O for various physicochemical processes, except for ozone (O3) production, which uniquely enriches 17O. This anomalous enrichment of 17O (Δ17O) is inherited by other photochemical oxidants and oxidation products derived from the precursor ozone through various atmospheric oxidative pathways. Thus, the oxygen isotopic compositions of sulfate (SO42-) and nitrate (NO3-) fluctuate seasonally, but the extent to which these seasonal changes are related to changes in isotopic compositions of ozone or to contribution of other photochemical oxidants is unknown. This can only be established by simultaneous measurement of oxygen isotopes in nitrate, sulfate, and ozone from the present-day Antarctic atmosphere. However, there is a paucity of such data, and the complex chemistry is only partly understood.

Because of its role in the life cycle of trace gases, reconstructing the oxidative capacity of the atmosphere is very important in understanding climate change. Triple oxygen isotopic compositions (Δ17O = δ17O - 0.52 × δ18O) of atmospheric sulfate and nitrate in Antarctic ice cores may have potential as atmospheric proxies of atmospheric oxidants because they reflect the oxidative chemical processes of their formation. This new approach may well allow scientists to peer back into the history of chemical reactions in the Antarctic atmosphere.

To address this challenge, Sakiko Ishino, Shohei hattori and colleagues from at Tokyo Institute of Technology and Université Grenoble Alpes, France conducted simultaneous measurement of Δ17O values of atmospheric sulfate, nitrate and ozone collected at Dumont d'Urville, the coastal site in Antarctica. The French team collected aerosol samples weekly over a one-year period, Japan-French collaborative team conducted various analyses of the ionic species and isotopic compositions, and monitoring the movement of air masses over Antarctica. Both sulfate and nitrate oxygen isotopic compositions varied significantly over the course of a year, with minimum values in summer and maximum values in winter. Ozone, however, showed comparatively limited variability. The scientists were able to demonstrate that ozone variations have no significant influence on the seasonal fluctuations of sulfate and nitrate 17O enrichment. Instead, these fluctuations are likely to reflect sunlight-driven changes in the relative importance of different oxidation pathways.

Analysis of aerosols collected from Antarctic inland sites in the future should help identify the processes contributing to the formation of sulfate and nitrate during spring and fall. Extending the analysis to ice cores might aid in the quantitative estimation of changes to the atmospheric oxidation environment on Earth, for example, glacial cycles of the Pleistocene (Ice Age).

Tokyo Institute of Technology

Related Ozone Articles:

Ozone threat from climate change
We know the recent extreme heat is something that we can expect more of as a result of increasing temperatures due to climate change.
Super volcanic eruptions interrupt ozone recovery
Strong volcanic eruptions, especially when a super volcano erupts, will have a strong impact on ozone, and might interrupt the ozone recovery processes.
How severe drought influences ozone pollution
From 2011 to 2015, California experienced its worst drought on record, with a parching combination of high temperatures and low precipitation.
New threat to ozone recovery
A new MIT study, published in Nature Geoscience, identifies another threat to the ozone layer's recovery: chloroform -- a colorless, sweet-smelling compound that is primarily used in the manufacturing of products such as Teflon and various refrigerants.
Ozone hole modest despite optimum conditions for ozone depletion
The ozone hole that forms in the upper atmosphere over Antarctica each September was slightly above average size in 2018, NOAA and NASA scientists reported today.
Increased UV from ozone depletion sterilizes trees
UC Berkeley paleobotanists put dwarf, bonsai pine trees in growth chambers and subjected them to up to 13 times the UV-B radiation Earth experiences today, simulating conditions that likely existed 252 million years ago during the planet's worst mass extinction.
Ozone at lower latitudes is not recovering, despite Antarctic ozone hole healing
The ozone layer -- which protects us from harmful ultraviolet radiation -- is recovering at the poles, but unexpected decreases in part of the atmosphere may be preventing recovery at lower latitudes.
The ozone layer continues to thin
The vital ozone layer has continued to deplete in recent years over the densely populated mid-latitudes and tropics, while it is recovering at the poles.
Study reveals new threat to the ozone layer
'Ozone depletion is a well-known phenomenon and, thanks to the success of the Montreal Protocol, is widely perceived as a problem solved,' says University of East Anglia's David Oram.
Ozone pollution connected to cardiovascular health
Exposure to ozone, a risk for impaired lung function, is also connected to health changes that can cause cardiovascular disease such as heart attack, high blood pressure and stroke, according to a new study of Chinese adults.
More Ozone News and Ozone Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at