Nav: Home

Major breakthrough in the manufacture of red blood cells

March 23, 2017

Researchers have generated the first immortalised cell lines which allow more efficient manufacture of red blood cells.

The team, from the University of Bristol and NHS Blood and Transplant, were able to manufacture red blood cells in a more efficient scale than was previously possible.

The results, published in Nature Communications, could, if successfully tested in clinical trials, eventually lead to a safe source of transfusions for people with rare blood types, and in areas of the world where blood supplies are inadequate or unsafe.

Previously, research in this field focused on growing donated stem cells straight into mature red blood cells. However that method presently produces small numbers of mature cells and requires repeat donations.

The world-leading team in Bristol have now developed a robust and reproducible technique which allows the production of immortalised erythroid cell lines from adult stem cells. These premature red cells can be cultured indefinitely, allowing larger-scale production, before being differentiated into mature red blood cells.

Dr Jan Frayne, from the University of Bristol's School of Biochemistry, said: "Previous approaches to producing red blood cells have relied on various sources of stem cells which can only presently produce very limited quantities. By taking an alternative approach we have generated the first human immortalised adult erythroid line (Bristol Erythroid Line Adult or BEL-A), and in doing so, have demonstrated a feasible way to sustainably manufacture red cells for clinical use from in vitro culture.

"Globally, there is a need for an alternative red cell product. Cultured red blood cells have advantages over donor blood, such as reduced risk of infectious disease transmission."

Prof Dave Anstee, Director at the NIHR Blood and Transplant Research Unit in Red Cell Products, which is a collaboration between the University of Bristol and NHS Blood and Transplant, said: "Scientists have been working for years on how to manufacture red blood cells to offer an alternative to donated blood to treat patients.

"The first therapeutic use of a cultured red cell product is likely to be for patients with rare blood groups because suitable conventional red blood cell donations can be difficult to source.

"The patients who stand to potentially benefit most are those with complex and life-limiting conditions like sickle cell disease and thalassemia, which can require multiple transfusions of well-matched blood. The intention is not to replace blood donation but provide specialist treatment for specific patient groups."

The cells were cultured at the University of Bristol and at NHS Blood and Transplant's Filton site.

NHS Blood and Transplant needs to collect 1.5 million units of blood each year to meet the needs of patients across England and the ongoing need for life saving blood donations remains. It would be many years before manufactured cells could be available on a large scale.

NHS Blood and Transplant announced plans for in-man trials of manufactured blood in 2015. This first trial will not use Bel-A cells. The first trial, due to start by the end of 2017, will use manufactured red cells from stem cells in a normal blood donation.
-end-
  • The research was funded by The Department of Health, The Wellcome Trust, NHS Blood and Transplant, BrisSynBio via a BBSRC/EPSRC Synthetic Biology Research Centre Grant, National Institute for Health Research Blood and Transplant Unit (NIHR BTRU) in Red Blood Cell Products at the University of Bristol in Partnership with NHS Blood and Transplant (NHSBT).

  • The research is available to view online here: http://www.nature.com/articles/ncomms14750

Images available on request

University of Bristol

Related Stem Cells Articles:

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.