Nav: Home

Wastewater cleaned thanks to a new adsorbent material made from fruit peels

March 23, 2017

Researchers from the University of Granada (UGR), and from the Center for Electrochemical Research and Technological Development (Centro de Investigación y Desarrollo Tecnológico en Electroquímica, CIDETEQ) and the Center of Engineering and Industrial Development (Centro de Ingeniería y Desarrollo Industrial, CIDESI), both in Mexico, have developed a process that allows to clean waters containing heavy metals and organic compounds considered pollutants, using a new adsorbent material made from the peels of fruits such as oranges and grapefruits.

Said peels are residues which pose a problem for the food industry, given that they take up a great volume and aren't very useful nowadays. 38.2 million tons of said fruit peels are estimated to be produced worldwide each year in the food industry.

The research, in which the UGR participates, has served for designing a new process by which, thanks to an Instant Controlled Pressure Drop treatment, it is possible to modify the structure of said residues, giving them adsorbent properties such as a greater porosity and surface area.

Researcher Luis Alberto Romero Cano, from the Carbon Materials Research Team (Grupo de Investigación en Materiales de Carbón) at the Faculty of Science, UGR, explains that, by a subsequent chemical treatment, they "have managed to add functional groups to the material, thus making it selective in order to remove metals and organic pollutants present in water".

A subsequent research carried out by the authors of this paper has showed that it is possible to pack those new materials in fixed bed columns, in a way similar to a filter by which wastewater runs on a constant flux process, like the usual wastewater treatments. This laboratory-scale study has allowed to obtain parameters to design a large-scale use of said materials.

"The results show a great potential for the use of said materials as adsorbents capable of competing with commercial activated carbon for the adsorption and recovery of metals present in wastewater, in a way that it could be possible to carry out sustainable processes in which products with a great commercial value could be obtained from food industry residues", Romero Cano says.
-end-


University of Granada

Related Wastewater Articles:

Wastewater test could provide early warning of COVID-19
Researchers at Cranfield University are working on a new test to detect SARS-CoV-2 in the wastewater of communities infected with the virus.
HKU team develops new wastewater treatment process
A University of Hong Kong research team has developed a novel wastewater treatment system that can effectively remove conventional pollutants, and recover valuable resources such as phosphorus and organic materials.
Treating wastewater with ozone could convert pharmaceuticals into toxic compounds
With water scarcity intensifying, wastewater treatment and reuse are gaining popularity.
Polluted wastewater in the forecast? Try a solar umbrella
Evaporation ponds, commonly used in many industries to manage wastewater, can occupy a large footprint and often pose risks to birds and other wildlife, yet they're an economical way to deal with contaminated water.
Wastewater leak in West Texas revealed
Geophysicists at SMU say that evidence of leak occurring in a West Texas wastewater disposal well between 2007 and 2011 should raise concerns about the current potential for contaminated groundwater and damage to surrounding infrastructure.
Mapping international drug use by looking at wastewater
Wastewater-based epidemiology is a rapidly developing scientific discipline with the potential for monitoring close to real-time, population-level trends in illicit drug use.
Mapping international drug use through the world's largest wastewater study
A seven-year project monitoring illicit drug use in 37 countries via wastewater samples shows that cocaine use was skyrocketing in Europe in 2017 and Australia had a serious problem with methamphetamine.
Plant research could benefit wastewater treatment, biofuels and antibiotics
Chinese and Rutgers scientists have discovered how aquatic plants cope with water pollution, a major ecological question that could help boost their use in wastewater treatment, biofuels, antibiotics and other applications.
Predicting earthquake hazards from wastewater injection
ASU-led geoscientists develop a method to forecast seismic hazards caused by the disposal of wastewater after oil and gas production.
Stronger earthquakes can be induced by wastewater injected deep underground
Earthquakes are getting deeper at the same rate as the wastewater sinks.
More Wastewater News and Wastewater Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.