Nav: Home

Where does laser energy go after being fired into plasma?

March 23, 2017

An outstanding conundrum on what happens to the laser energy after beams are fired into plasma has been solved in newly-published research at the University of Strathclyde.

The study discovered that the same forces that produce a bubble in plasma in the laser-plasma wakefield accelerator produce two additional low-energy but high-charge electron beams simultaneously with a low charge high energy beam. These high charge beams can have a thousand times more charge than the high energy beam.

Plasma, the state in which nearly all of the universe exists, can support electric fields that are 1,000 to 10,000 times higher than in conventional accelerators, simply by separating the positive and negative charged particles that makes up the plasma medium, which is quasi-neutral.

This can easily be achieved using an intense laser pulse, the light pressure of which pushes electrons out of its way, leaving behind the much heavier ions which remain in place and exert an attractive force on the displaced electrons. The displaced electrons then oscillate around the stationary ions resulting in a wake behind the laser pulse, in a similar manner to the wake behind a boat.

Because the laser pulse travels at a velocity close to that of light in vacuum, the wake can track and accelerate charged particles rapidly to very high energies, over extremely short lengths.

The research paper, entitled Three electron beams from a laser-plasma wake?eld accelerator and the energy apportioning question, has been published in Scientific Reports.

Professor Dino Jaroszynski, of Strathclyde's Department of Physics, led the study. He said: "The intense laser pulse we used, and the acceleration of the wake it creates, lead to a very compact laser wakefield accelerator, which is millimetres long, rather than tens of metres long, for an equivalent conventional accelerator. The plasma wake forms into something like a bubble-shaped, laser-powered miniature Van de Graaf accelerator, which travels at close to the speed of light.

"Some of the laser energy is converted to electrostatic energy of the plasma bubble, which has a diameter of several microns. Conventional accelerators store their microwave energy in copper or superconducting cavities, which have limited power-carrying capability.

"An interesting conundrum that has not been considered before is the question of where laser energy goes after being deposited in plasma. We know where some of this energy goes because of the presence of high-energy electrons emitted in a narrow, forward directed beam.

"One of these beams is emitted by a sling-shot action into a broad forward-directed cone, with several MeV (mega electron volt) energies and nanocoulomb-level charge. Paradoxically, another beam is emitted in the backward direction, which has similar charge but an energy of around 200 keV (kilo electron volt). These beams carry off a significant amount of energy from the plasma bubble.

"It is interesting to observe that answering a very basic question - where does the laser energy go? - yields surprising and paradoxical answers. Introducing a new technology, such as the laser-wakefield accelerator, can change the way we think about accelerators. The result is a very novel source of several charge particle beams emitted simultaneously.

"My research group has shown that the wakefield accelerator produces three beams, two of which are low energy and high charge, and the third, high energy and low charge."

Dr Enrico Brunetti, a Research Fellow in Strathclyde's Department of Physics and a member of the research group, said: "These beams can provide a useful high flux of electrons or bremsstrahlung photons over a large area, which can be used for imaging applications, or for investigating radiation damage in materials. If not properly dumped, they can, however, have undesirable side-effects, such as causing damage to equipment placed close to the accelerator.

"This is a particular concern for longer accelerators, which often use plasma wave guides based on capillaries to guide the laser beam over long distances. These low energy, high charge beams also carry a large amount of energy away from the plasma, setting a limit to the efficiency of laser-wakefield accelerators.

"This is an issue which needs to be taken into account in the future design and construction of laser-wakefield accelerators."
-end-
The Research Excellence Framework 2014, the comprehensive rating of UK universities' research, ranked the University of Strathclyde's Physics research first in the UK, with 96% of output assessed as world-leading or internationally excellent.

University of Strathclyde

Related Plasma Articles:

Table top plasma gets wind of solar turbulence
Scientists from India and Portugal recreate solar turbulence on a table top using a high intensity ultrashort laser pulse to excite a hot, dense plasma and followed the evolution of the giant magnetic field generated by the plasma dynamics.
Getting the biggest bang out of plasma jets
Capillary discharge plasma jets are created by a large current that passes through a low-density gas in what is called a capillary chamber.
Neptune: Neutralizer-free plasma propulsion
Plasma propulsion concepts are gridded-ion thrusters that accelerate and emit more positively charged particles than negatively charged ones.
UCLA researchers discover a new cause of high plasma triglycerides
People with hypertriglyceridemia often are told to change their diet and lose weight.
Where does laser energy go after being fired into plasma?
An outstanding conundrum on what happens to the laser energy after beams are fired into plasma has been solved in newly-published research at the University of Strathclyde.
New feedback system could allow greater control over fusion plasma
A physicist has created a new system that will let scientists control the energy and rotation of plasma in real time in a doughnut-shaped machine known as a tokamak.
PPPL scientist uncovers physics behind plasma-etching process
PPPL physicist Igor Kaganovich and collaborators have uncovered some of the physics that make possible the etching of silicon computer chips, which power cell phones, computers, and a huge range of electronic devices.
Calculating 1 billion plasma particles in a supercomputer
At the National Institutes of Natural Sciences National Institute for Fusion Science (NIFS) a research group using the NIFS 'Plasma Simulator' supercomputer succeeded for the first time in the world in calculating the movements of one billion plasma particles and the electrical field constructed by those particles.
Anti-tumor effect of novel plasma medicine caused by lactate
Nagoya University researchers developed a new physical plasma-activated salt solution for use as chemotherapy.
Clarifying the plasma oscillation by high-energy particles
The National Institute for Fusion Science has developed a new code that can simulate the movement of plasma and, simultaneously, the movement of particles circulating at high speeds.

Related Plasma Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...