Nav: Home

WPI, BSEE, and the US Coast Guard successfully test a novel oil spill cleanup technology

March 23, 2017

Worcester, Mass. - Tests conducted last week of a novel technology that can greatly accelerate the combustion of crude oil floating on water demonstrated its potential to become an effective tool for minimizing the environmental impact of future oil spills. Called the Flame Refluxer, the technology, developed by fire protection engineering researchers at Worcester Polytechnic Institute (WPI) with funding from the Bureau of Safety and Environmental Enforcement (BSEE), could make it possible to burn off spilled oil quickly while producing relatively low levels of air pollutants.

The tests of the Flame Refluxer were conducted between March 13 and March 17 by WPI and BSEE at the United States Coast Guard's Joint Maritime Test Facility on Little Sand Island, located in Mobile Bay. WPI is the first university to work on research at the facility since it reopened in 2015. The tests involved controlled burns of oil in a specially designed test tank on the island.

"In-situ burning has been used with great success, and it is our goal to support research that makes a good method even better," said Karen Stone, oil spill response engineer at BSEE. "This research, and the results of these tests, are particularly exciting. We saw hotter fires increase the amount of oil that was consumed, what appears to be cleaner emissions, and a significant reduction in burn residue after the burn. Initially we were hopeful that the technology could capture any remaining residue after the burn, but the fires burned so efficiently there was very little to collect."

When oil is spilled in open water, burning it in place (called in-situ burning) can be an effective method for removing the oil before it can settle into the water column and cause ecological harm. In fact, the current research project is based, in part, on the experience of the 2010 Deepwater Horizon disaster, during which more than 400 controlled burns removed between 220,000 and 310,000 barrels of oil from the ocean's surface.

While that experience demonstrated the potential for burns to become an effective clean-up tool, they also made clear the limitations of current techniques. For example, open-water oil fires can be difficult to sustain, they produce smoke, and they leave behind a tar-like residue that can harm marine life. The Flame Refluxer is designed to overcome each of those issues.

According to Scott Fields of the USCG Research and Development Center "in-situ burning is already a very successful process, but we want to improve the air quality for our first responders who are engaged in oil spill cleanup."

The Flame Refluxer consists of metal coils attached to a blanket made from copper wool sandwiched between two layers of copper mesh. The blanket is designed to be placed on top of floating oil that has been collected with a boom towed by boats. After the oil is ignited, the coils and blanket transmit heat from the flames to superheat the oil, which increases its burning rate and efficiency. As a result, the oil burns more completely. The more complete combustion produces fewer airborne emissions, and any solid residue is captured by the copper wool and kept out of the water column.

The technology was developed at WPI by a team led by Ali Rangwala, professor of fire protection engineering, as an outgrowth of research funded by the U.S. Department of the Interior aimed at assessing the feasibility of using in-situ burns to clean up oil spills in remote locations in the Arctic, where harsh weather can make it difficult to quickly mobilize clean-up equipment and crews. When laboratory tests identified the challenges of igniting and sustaining oil fires on ice and in cold water, Rangwala and his team began exploring methods for making the oil easier to burn by transmitting heat from the flames to the oil. The Flame Refluxer is the product of that exploration.

"The technology is so simple, it has no moving parts, it's inexpensive, and it significantly enhances the burning rate of oil. The tests we conducted at this unique facility will allow us to advance the technology closer to actual deployment" said Rangwala.

Prototypes of the technology were tested in the state-of-the-art Fire Protection Engineering Laboratory at WPI. The tests at the Joint Maritime Test Facility used a larger prototype, a circular blanket nearly 1.5 meters (four feet, eight inches) across with up to 48 metal coils attached. The blanket was immersed in a layer of crude oil floating on water. Oil was pumped to the test apparatus to maintain the oil layer at about one centimeter (0.4 inches) throughout each 10-20 minute test burn. (Previous research has shown that crude oil burns most effectively when the oil layer that is maintained between one and four centimeters.)

During test burns conducted with and without the Flame Refluxer, the researchers measured a number of parameters, including temperatures above the oil fire and the flow rate of oil delivered to the test apparatus, in order to determine how effectively the Flame Refluxer conveyed heat from the flames to the oil (a process known as heat flux) and how it changed the oil burning rate. An air sampling station collected emissions produced by the fire and continuously measured several combustion byproducts: carbon dioxide, carbon monoxide, nitrogen dioxide, sulfur dioxide, and particulate matter (PM2.5 and PM10). The copper blanket was weighed before and after each test to see how effectively it trapped residue from the oil fires.

While it will take time to analyze the large volume of data collected during the test burns and report official results, Rangwala said the research team made several observations that suggested that the Flame Refluxer technology performed as expected. "Where we observed thick black smoke during a baseline test, where we burned crude oil without the blanket and coils, when the Refluxer was in use, the smoke was thinner and grey, even though more oil was being combusted. In fact, our measurements show that between four and five times as much oil was burned per minute with the Flame Refluxer in place. Finally, we observed that virtually no residue was left over after our burns with the Refluxer, an indication that it promotes more complete combustion of the oil."
-end-
About Worcester Polytechnic Institute

Founded in 1865 in Worcester, Mass., WPI is one of the nation's first engineering and technology universities. Its 14 academic departments offer more than 50 undergraduate and graduate degree programs in science, engineering, technology, business, the social sciences, and the humanities and arts, leading to bachelor's, master's and doctoral degrees. WPI's talented faculty work with students on interdisciplinary research that seeks solutions to important and socially relevant problems in fields as diverse as the life sciences and bioengineering, energy, information security, materials processing, and robotics. Students also have the opportunity to make a difference to communities and organizations around the world through the university's innovative Global Projects Program. There are more than 40 WPI project centers throughout the Americas, Africa, Asia-Pacific, and Europe.

About BSEE

BSEE works to promote safety, protect the environment, and conserve resources offshore through vigorous regulatory oversight and enforcement. BSEE has been the lead federal agency charged with improving safety and ensuring environmental protection related to the offshore energy industry, primarily oil and natural gas, on the U.S. Outer Continental Shelf.

About the USCG Research and Development Center

The Research and Development Center, located in New London, Conn., is the Coast Guard's sole facility performing research, development, and test and evaluation in support of the service's major missions. The Joint Maritime Test Facility in Mobile, Alabama provides an instrumented, real-world maritime test environment for the evaluation and demonstration of spill response technologies that includes in-situ burns in a newly refurbished JMTF test tank.

Worcester Polytechnic Institute

Related Technology Articles:

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.
Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.
Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.
Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.
The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).
AI technology could help protect water supplies
Progress on new artificial intelligence (AI) technology could make monitoring at water treatment plants cheaper and easier and help safeguard public health.
Transformative technology
UC Davis neuroscientists have developed fluorescence sensors that are opening a new era for the optical recording of dopamine activity in the living brain.
Do the elderly want technology to help them take their medication?
Over 65s say they would find technology to help them take their medications helpful, but need the technology to be familiar, accessible and easy to use, according to research by Queen Mary University of London and University of Cambridge.
Technology detecting RNase activity
A KAIST research team of Professor Hyun Gyu Park at Department of Chemical and Biomolecular Engineering developed a new technology to detect the activity of RNase H, a RNA degrading enzyme.
Taking technology to the next level
Physicists from the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) developed a new hybrid integrated platform, promising to be a more advanced alternative to conventional integrated circuits.
More Technology News and Technology Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.