Flexible ultrasound patch could make it easier to inspect damage in odd-shaped structures

March 23, 2018

Researchers have developed a stretchable, flexible patch that could make it easier to perform ultrasound imaging on odd-shaped structures, such as engine parts, turbines, reactor pipe elbows and railroad tracks--objects that are difficult to examine using conventional ultrasound equipment.

The ultrasound patch is a versatile and more convenient tool to inspect machine and building parts for defects and damage deep below the surface. A team of researchers led by engineers at the University of California San Diego published the study in the Mar. 23 issue of Science Advances.

The new device overcomes a limitation of today's ultrasound devices, which are difficult to use on objects that don't have perfectly flat surfaces. Conventional ultrasound probes have flat and rigid bases, which can't maintain good contact when scanning across curved, wavy, angled and other irregular surfaces. That's a considerable limitation, said Sheng Xu, a professor of nanoengineering at the UC San Diego Jacobs School of Engineering and the study's corresponding author. "Nonplanar surfaces are prevalent in everyday life," he said.

"Elbows, corners and other structural details happen to be the most critical areas in terms of failure--they are high stress areas," said Francesco Lanza di Scalea, a professor of structural engineering at UC San Diego and co-author of the study. "Conventional rigid, flat probes aren't ideal for imaging internal imperfections inside these areas."

Gel, oil or water is typically used to create better contact between the probe and the surface of the object it's examining. But too much of these substances can filter some of the signals. Conventional ultrasound probes are also bulky, making them impractical for inspecting hard-to-access parts.

"If a car engine has a crack in a hard-to-reach location, an inspector will need to take apart the entire engine and immerse the parts in water to get a full 3D image," Xu said.

Now, a UC San Diego-led team has developed a soft ultrasound probe that can work on odd-shaped surfaces without water, gel or oil.

The probe is a thin patch of silicone elastomer patterned with what's called an "island-bridge" structure. This is essentially an array of small electronic parts (islands) that are each connected by spring-like structures (bridges). The islands contain electrodes and devices called piezoelectric transducers, which produce ultrasound waves when electricity passes through them. The bridges are spring-shaped copper wires that can stretch and bend, allowing the patch to conform to nonplanar surfaces without compromising its electronic functions.

Researchers tested the device on an aluminum block with a wavy surface. The block contained defects two to six centimeters beneath the surface. Researchers placed the probe at various spots on the wavy surface, collected data and then reconstructed the images using a customized data processing algorithm. The probe was able to image the 2-millimeter-wide holes and cracks inside the block.

"It would be neat to be able to stick this ultrasound probe onto an engine, airplane wing or different parts of a bridge to continuously monitor for any cracks," said Hongjie Hu, a materials science and engineering Ph.D. student at UC San Diego and co-first author of the study.

The device is still at the proof-of-concept stage. It does not yet provide real-time imaging. It also needs to be connected to a power source and a computer to process data. "In the future, we hope to integrate both power and a data processing function into the soft ultrasound probe to enable wireless, real-time imaging and videoing," Xu said.
-end-
The team has filed a patent on this technology. Contact Victoria Cajipe in the campus Innovation and Commercialization Office at vcajipe@ucsd.edu or (858) 822-2304 for licensing information.

Paper title: "Stretchable ultrasonic transducer arrays for three-dimensional imaging on complex surfaces."

This work was supported in part by the National Institutes of Health (grant R21EB025521) and funding from Clinical and Translational Science Awards (UL1TR001442). Additional support was provided by the UC San Diego Center for Healthy Aging, a grant from the U.S. Federal Railroad Administration (FR-RRD-0027-11) and the National Science Foundation (CMMI-1362144).

University of California - San Diego

Related Engineering Articles from Brightsurf:

Re-engineering antibodies for COVID-19
Catholic University of America researcher uses 'in silico' analysis to fast-track passive immunity

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.

COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.

Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.

Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.

New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.

Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.

Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.

Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.

Read More: Engineering News and Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.