Researchers unveil high-sensitivity 3-D technique using single-atom measurements

March 23, 2018

Researchers at Griffith University working with Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) have unveiled a stunningly accurate technique for scientific measurements which uses a single atom as the sensor, with sensitivity down to 100 zeptoNewtons.

Using highly miniaturised segmented-style Fresnel lenses - the same design used in lighthouses for more than a century - which enable exceptionally high-quality images of a single atom, the scientists have been able to detect position displacements with nanometre precision in three dimensions.

"Our atom is missing one electron, so it's very sensitive to electrical fields. By measuring the displacement, we've built a very sensitive tool for measuring electrical forces." Dr Erik Streed, of the Centre for Quantum Dynamics, explained.

"100 zeptoNewtons is a very small force. That's about the same as the force of gravity between a person in Brisbane and a person in Canberra. It can be used to investigate what's occurring on surfaces, which will help miniaturise ion trap type quantum computers and other quantum devices."

Griffith researchers have been pioneering the application of such lenses in quantum physics since 2011, but this is the first time they have been used to achieve such high levels of accuracy in sensing the forces influencing a particular atom.

By intentionally moving their optics slightly out of focus, the researchers were able to measure displacements in all three dimensions, with the third direction determined by if the atom was shifting back into focus or further out of focus.

Along with the research's applications for fundamental physics of magnetic, atomic, quantum and surface phenomena, Dr Streed is also working as part of Griffith's Institute for Glycomics to adapt these sorts of quantum technologies for medical and biological research.

"With the Institute for Glycomics I'm also interested in developing this into a tool to measure the electrical fields outside a single isolated biomolecule, like the dipole moment, as a new way to help understand how they behave," he said.

The heightened accuracy of the technique is precisely due to the use of a solo atom as a 'probe' in obtaining these measurements. Previous techniques similar to this used many atoms as the electric force sensor and were limited to only one dimension.
This research was supported financially by the Australian Research Council, the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing facility at Pullenvale, Queensland, Griffith University, and the Australian Government Research Training Program Scholarship.

"A single-atom 3D sub-attonewton force sensor" by Bl?ms et al., will appear in the 23 March 2018 edition of Science Advances.

Griffith University

Related Quantum Articles from Brightsurf:

Theoreticians show which quantum systems are suitable for quantum simulations
A joint research group led by Prof. Jens Eisert of Freie Universit├Ąt Berlin and Helmholtz-Zentrum Berlin (HZB) has shown a way to simulate the quantum physical properties of complex solid state systems.

Quantum shake
There they were, in all their weird quantum glory: ultracold lithium atoms in the optical trap operated by UC Santa Barbara undergraduate student Alec Cao and his colleagues in David Weld's atomic physics group.

New evidence for quantum fluctuations near a quantum critical point in a superconductor
A study has found evidence for quantum fluctuations near a quantum critical point in a superconductor.

Quantum simulation of quantum crystals
International research team describes the new possibilities offered by the use of ultracold dipolar atoms

Quantum machines learn "quantum data"
Skoltech scientists have shown that quantum-enhanced machine learning can be used on quantum (as opposed to classical) data, overcoming a significant slowdown common to these applications and opening a ''fertile ground to develop computational insights into quantum systems''.

Simulating quantum 'time travel' disproves butterfly effect in quantum realm
Using a quantum computer to simulate time travel, researchers have demonstrated that, in the quantum realm, there is no 'butterfly effect.' In the research, information--qubits, or quantum bits--'time travel' into the simulated past.

Orbital engineering of quantum confinement in high-Al-content AlGaN quantum well
Recently, professor Kang's group focus on the limitation of quantum confine band offset model, the hole states delocalization in high-Al-content AlGaN quantum well are understood in terms of orbital intercoupling.

Quantum classifiers with tailored quantum kernel?
Quantum information scientists have introduced a new method for machine learning classifications in quantum computing.

A Metal-like Quantum Gas: A pathbreaking platform for quantum simulation
Coherent and ultrafast laser excitation creates an exotic matter phase with spatially overlapping electronic wave-functions under nanometric control in an artificial micro-crystal of ultracold atoms.

Quantum leap: Photon discovery is a major step toward at-scale quantum technologies
A team of physicists at the University of Bristol has developed the first integrated photon source with the potential to deliver large-scale quantum photonics.

Read More: Quantum News and Quantum Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to