Taking a break helps drosophila germline cells reach their destination

March 23, 2020

Tsukuba, Japan - In most cases, taking a break isn't the most efficient way of getting a job done. But in a study published this week in iScience, researchers from Japan's University of Tsukuba have uncovered the regulatory pathway governing the first of two breaks that are essential for proper germline cell development in model species Drosophila melanogaster.

Germ cells go on to form the mature cells (gametes) needed for sexual reproduction--sperm and eggs. During germ cell cycling in Drosophila, primordial germ cells, called pole cells, migrate through the developing embryo to the gonads, where they mature into gametes. Interestingly, cell cycling is arrested during this migration period.

Previous studies have shown that there are actually two rest, or quiescence, periods in Drosophila germ cell cycling that appear to be essential for pole cell maturation and, ultimately, fertility. However, while the pathway regulating the second of these rest cycles has been characterized, the first pathway appears to be independently regulated via an as yet unknown mechanism.

"Research has shown that newly-formed pole cells lack nucleoli, while nucleoli are prominent in somatic cells at the same time point," says lead author of the study Dr Shumpei Morita. "This led us to investigate factors that influence nucleolus formation, specifically the Pgc peptide, encoded by pgc."

Sure enough, the researchers found that Pgc repressed nucleolus formation in pole cells and inhibited the expression of a microRNA, miR-10404, which is encoded within the nucleolus organizer region of the chromosome. microRNAs degrade specific target messenger RNA, preventing protein expression. By examining messenger RNA levels in pgc mutant versus normal pole cells, the researchers were able to pinpoint the target of miR-10404.

"Our results showed that miR-10404 degrades dap messenger RNA in pole cells," explains senior author Professor Satoru Kobayashi. "Dap is a Cdk inhibitor that blocks cell cycle progression. Thus, in normal pole cells, Pgc-dependent suppression of miR-10404 expression prevents the degradation of dap messenger RNA, resulting in Dap accumulation and inhibition of cell cycle progression."

When the researchers artificially increased cellular levels of miR-10404 and CycB, which inhibits the first and second germline quiescence, pole cells failed to migrate to the gonads and were eliminated in the resulting embryos. This observation confirmed that the two rest periods are essential for Drosophila germline development.

Says Professor Kobayashi, "Given the widespread occurrence of cell cycle quiescence in animals, our findings will help us to better understand the mechanism and significance of these rest periods during germline development."

University of Tsukuba

Related Drosophila Articles from Brightsurf:

Novel Drosophila-based disease model to study human intellectual disability syndrome
The researchers from the TalTech molecular neurobiology laboratory headed by professor T├Ánis Timmusk used the fruit fly, Drosophila melanogaster to develop a novel disease model for Pitt-Hopkins syndrome (PTHS).

A changing mating signal may initiate speciation in populations of Drosophila mojavensis
When choosing a mate, females of different subspecies of Drosophila mojavensis recognize the right mating partners either mainly by their song or by their smell.

Foraging Drosophila flies are open for new microbial partners
Scientists at the Max Planck Institute for Chemical Ecology found that vinegar flies do not necessarily prefer yeasts from their natural environments, but were also attracted by yeasts found in a foreign habitat.

Taking a break helps drosophila germline cells reach their destination
Quiescence, or breaks during cell cycling, are common during germ cell development in many animals but the mechanisms regulating these periods are unclear.

Insects share the same signaling pathway to form their 3-dimensional body
Zoologist shows that beetles, bugs and crickets control their body shape through Fog signalling / publication in 'eLife'.

Geneticists unlock the secret of mutant flies' longevity
Russian researchers determined which genes are affected by mutation that extends lifespan of fruit flies.

Using fruit flies to identify new treatment for a colorectal cancer patient
Erdem Bangi and colleagues demonstrate a new approach to developing personalized therapy for a patient with treatment-resistant colorectal cancer: using a fruit fly genetically modified with a patient's own cancer mutations to test candidate treatments.

No super-Drosophila: Vinegar fly species have a good vision or olfaction, but not both
A team of scientists from the Max Planck Institute for Chemical Ecology has systematically studied and compared the eyes and antennae and the associated brain structures of more than 60 species of the genus Drosophila.

Algorithms to locate centrioles in the cell
Investigators from the UEx have developed a methodology with new algorithms to analyse the location of the centriole in a model cell.

A study using Drosophila sheds light on the metastatic behavior of human tumors
A study at the Institute for Research in Biomedicine (IRB Barcelona) using Drosophila melanogaster has demonstrated that chromosomal instability itself can induce invasive behavior in epithelial cells and has identified the underlying molecular mechanisms involved.

Read More: Drosophila News and Drosophila Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.