Supermassive black holes shortly after the Big Bang: How to seed them

March 23, 2020

They are billions of times larger than our Sun: how is it possible that, as recently observed, supermassive black holes were already present when the Universe, now 14 billion years old, was "just" 800 million years old? For astrophysicists, the formation of these cosmic monsters in such a short time is a real scientific headache, which raises important questions on the current knowledge of the development of these celestial bodies. A recent article published in The Astrophysical Journal, by the SISSA Ph.D. student Lumen Boco and his supervisor Andrea Lapi, offers a possible explanation to the thorny issue. Thanks to an original model theorized by the scientists from Trieste, the study proposes a very fast formation process in the initial phases of the development of the supermassive black holes, those up to now considered slower. Proving, mathematically, that their existence was possible in the young Universe, the results of the research reconcile the timing required for their growth with the limits imposed by the age of the Cosmos. The validity of the theory can be fully validated thanks to future gravitational wave detectors namely Einstein Telescope and LISA, but tested in several basic aspects also with the current Advanced LIGO/Virgo system.

The cosmic monster that grows at the centre of galaxies

The scientists started their study with a piece of well-known observational evidence: the growth of supermassive black holes occurs in the central regions of galaxies, progenitors of the current elliptical galaxies, which had a very high gas content and in which the stellar formation was extremely intense. "The biggest stars live a short time and very quickly evolve into stellar black holes, as large as several scores of solar masses; they are small, but many form in these galaxies". The dense gas that surrounds them, explain Boco and Lapi, has a very powerful definitive effect of dynamic friction and causes them to migrate very quickly to the centre of the galaxy. The majority of the numerous black holes that reach the central regions merge, creating the supermassive black hole seed. Boco and Lapi continue: "According to classical theories, a supermassive black hole grows at the centre of a galaxy capturing the surrounding matter, principally gas, "growing it" on itself and finally devouring it at a rhythm which is proportional to its mass. For this reason, during the initial phases of its development, when the mass of the black hole is small, the growth is very slow. To the extent that, according to the calculations, to reach the mass observed, billions of times that of the Sun, a very long time would be required, even greater than the age of the young Universe". Their study, however, showed that things could go much faster than that.

The crazy dash of black holes: what the scientists have discovered

"Our numerical calculations show that the process of dynamic migration and fusion of stellar black holes can make the supermassive black hole seed reach a mass of between 10,000 and 100,000 times that of the Sun in just 50-100 million years". At this point, the researchers say, "the growth of the central black hole according to the aforementioned direct accretion of gas, envisaged by the standard theory, will become very fast, because the quantity of gas it will succeed in attracting and absorbing will become immense, and predominant on the process we propose. Nevertheless, precisely the fact of starting from such a big seed as envisaged by our mechanism speeds up the global growth of the supermassive black hole and allows its formation, also in the Young Universe. In short, in light of this theory, we can state that 800 million years after the Big Bang the supermassive black holes could already populate the Cosmos".

"Looking" at the supermassive black hole seeds grow

The article, besides illustrating the model and demonstrating its efficacy, also proposes a method for testing it: "The fusion of numerous stellar black holes with the seed of the supermassive black hole at the centre will produce gravitational waves which we expect to see and study with current and future detectors", explain the researchers. In particular, the gravitational waves emitted in the initial phases, when the central black hole seed is still small, will be identifiable by the current detectors like Advanced LIGO/Virgo and fully characterisable by the future Einstein Telescope. The subsequent development phases of the supermassive black hole could be investigated thanks to the future detector LISA, which will be launched in space around 2034. In this way, explain Boco and Lapi, "the process we propose can be validated in its different phases, in a complementary way, by future gravitational wave detectors.

"This research" concludes Andrea Lapi, coordinator of the Astrophysics and Cosmology group of SISSA, "shows how the students and researchers of our group are fully approaching the new frontier of gravitational waves and multi-messenger astronomy. In particular, our main goal will be to develop theoretical models, like that devised in this case, which serve to capitalise on the information originating from the experiments of current and future gravitational waves, thereby hopefully providing solutions for unresolved issues connected with astrophysics, cosmology and fundamental physics".
-end-


Scuola Internazionale Superiore di Studi Avanzati

Related Black Hole Articles from Brightsurf:

Black hole or no black hole: On the outcome of neutron star collisions
A new study lead by GSI scientists and international colleagues investigates black-hole formation in neutron star mergers.

The black hole always chirps twice: New clues deciphering the shape of black holes
A team of gravitational-wave scientists led by the ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav) reveal that when two black holes collide and merge, the remnant black hole 'chirps' not once, but multiple times, emitting gravitational waves--intense ripples in the fabric space and time--that inform us about its shape.

Wobbling shadow of the M87 black hole
New analysis from the Event Horizon Telescope (EHT) Collaboration reveals the behavior of the supermassive black hole in the center of the M87 galaxy across multiple years, indicating the crescent-like shadow feature appears to be wobbling.

How to have a blast like a black hole
Scientists at Osaka University have created magnetized-plasma conditions similar to those near a black hole using very intense laser pulses.

Black hole collision may have exploded with light
Astronomers have seen what appears to the first light ever detected from a black hole merger.

Black hole's heart still beating
The first confirmed heartbeat of a supermassive black hole is still going strong more than ten years after first being observed.

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.

Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.

Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.

Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.

Read More: Black Hole News and Black Hole Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.