Nav: Home

Arctic light pollution affects fish, zooplankton up to 200 metres deep

March 23, 2020

The Arctic polar night is a time when the sun remains below the horizon for a full 24-hour cycle. It is dark, but not completely. Nevertheless, the lack of light has long led researchers to assume that the organisms that live through this dark period are mostly dormant.

For a decade, an international team of researchers has been exploring the polar night to see exactly how organisms survive in the dark.

Over the course of their surveys, they've learned the only way they can really understand what's going on is to turn out the lights on their research vessels and rely on autonomous underwater vehicles that need no light to do their work.

And when they've done that, they've found birds that dive into the nearly pitch-black ocean to feast on bioluminescent plankton and krill, and deepwater fishes that normally live at great depths foraging in kelp beds just 2 metres deep, to name just a few.

"As the sun becomes less and less visible on the sky, the relative importance of the moon, the stars and even the aurora borealis becomes more and more important," says Jørgen Berge, a biologist at UiT - The Arctic University of Norway and the Norwegian University of Science and Technology (NTNU) who headed the international research team.

Now, Berge and his team, which also includes scientists from the UK, Canada and the US, has been able to quantify just how much light can affect the behaviour of all these creatures. Their results have been published in Communications Biology.

It turns out it doesn't take much light to affect organisms at all, the researchers found. Some reacted to light levels as low as one millionth that of daylight, including algal cells that entered a photoactive state a full six weeks before the return of sunlight. So much so that all previous biological surveys of everything from plankton to fish stocks may be fundamentally wrong, the researchers say.

"We have been able to document light-regulated biological processes that are still ongoing throughout the polar night," Berge said. "Many species of fish and zooplankton remain active and migrate vertically in the water column over a 24-hour period. These migrations are fully regulated by small changes in either sunlight or moonlight."

Geir Johnsen, a biologist at NTNU who was one of the authors of the paper, says this sensitivity was surprisingly extreme -- and has important consequences.

"Even the light from a research vessel, or a vessel estimating the stock size of zooplankton and fish, can influence organisms down to 200 metres below the ocean surface. They can either be attracted to the light or flee from it," Johnsen said. "All of this makes it very difficult to say anything accurate about behaviour or populations, and stock assessments of fish may be influenced by this at nighttime all over the world."

Johnsen is a key scientist at NTNU's "Autonomous Marine Operations and Systems (AMOS) Centre of Excellence, where he describes his role as "trying to merge enabling technology with the natural sciences.

In this situation, he says, where light is so critically important, the researchers need to use autonomous robots that don't need any artificial light and that can give them information that is not affected by artificial light.

This ability to study the dark without disturbing it is how the team was able to determine how profoundly light could upset behaviours that were normally tuned to the polar darkness.

This picture is complicated by global warming, the researchers say. Arctic sea ice is melting faster than at any time in recorded history, and growing human activity in the Arctic, with respect to fisheries, oil and gas, mineral extraction, new transport routes and tourism, is rapidly increasing as areas become free of ice.

Consequently, light pollution is pouring into the Arctic, and is now thought to be among the fastest growing sources of pollution in the region.

Johnsen says it's critical for researchers to learn as much as they can about how this ecosystem works before it is irreparably changed.

"About 50 percent of the oxygen that we breathe is from these microscopic algae in the world's oceans. Without those key groups there would be no life. Simple as that," he says.

Over this past year, the research team has also worked on the movie project "Into the Dark", which attempts to unravel the mystery of the polar night.

The movie mostly follows Berge, who is head of the Polar Night project and includes David McKee from the University of Strathclyde, Glasgow, and Johnsen. It premiered in Tromsø, Norway; in mid-January and will be shown at a number of film festivals throughout the year.
-end-
Berge, Johnsen and their colleague Jonathan Cohen from the University of Delaware are also editors of a book that will be published in mid-March on their research. The book is entitled Polar Night: Marine Ecology, Life and Light in the Dead of Night.

Reference: Berge, J., Geoffroy, M., Daase, M. et al. Artificial light during the polar night disrupts Arctic fish and zooplankton behaviour down to 200m depth. Commun Biol 3, 102 (2020). https://doi.org/10.1038/s42003-020-0807-6

Norwegian University of Science and Technology

Related Global Warming Articles:

The ocean has become more stratified with global warming
A new study found that the global ocean has become more layered and resistant to vertical mixing as warming from the surface creates increasing stratification.
Containing methane and its contribution to global warming
Methane is a gas that deserves more attention in the climate debate as it contributes to almost half of human-made global warming in the short-term.
Global warming and extinction risk
How can fossils predict the consequences of climate change? A German research team from Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), the Museum of Natural History Berlin and the Alfred Wegener Institute compared data from fossil and marine organisms living today to predict which groups of animals are most at risk from climate change.
Intensified global monsoon extreme rainfall signals global warming -- A study
A new study reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America.
Global warming's impact on undernourishment
Global warming may increase undernutrition through the effects of heat exposure on people, according to a new study published this week in PLOS Medicine by Yuming Guo of Monash University, Australia, and colleagues.
Global warming will accelerate water cycle over global land monsoon regions
A new study provides a broader understanding on the redistribution of freshwater resources across the globe induced by future changes in the monsoon system.
Comparison of global climatologies confirms warming of the global ocean
A report describes the main features of the recently published World Ocean Experiment-Argo Global Hydrographic Climatology.
Six feet under, a new approach to global warming
A Washington State University researcher has found that one-fourth of the carbon held by soil is bound to minerals as far as six feet below the surface.
Can we limit global warming to 1.5 °C?
Efforts to combat climate change tend to focus on supply-side changes, such as shifting to renewable or cleaner energy.
Global warming: Worrying lessons from the past
56 million years ago, the Earth experienced an exceptional episode of global warming.
More Global Warming News and Global Warming Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.