Nav: Home

Pushing periodic disorder induced phase-matching into deep-ultraviolet spectral region

March 23, 2020

Nonlinear optical frequency conversion is an important technique to extend the wavelength of lasers which has been widely used in modern technology. The efficiency of frequency conversion depends on the phase relationship among the interacting light waves. High conversion efficiency requires the satisfaction of phase matching. However, due to the dispersion property of nonlinear optical crystals, the phase mismatching always occurs, thus, phase matching condition should be specially designed. There are two widely used techniques for phase-matching: birefringence phase matching (BPM) and quasi-phase matching (QPM). Normally, BPM employs the natural birefringence properties of nonlinear optical crystals, and QPM is mainly focused on the periodically inversion of the ferroelectric domains. However, most of nonlinear optical crystals hold neither sufficient birefringence nor controllable ferroelectric domains. Therefore, it is in urgent demand to develop new route to meet phase-matching in arbitrary nonlinear crystals and in broad wavelength ranges.

In a new paper published in Light Science & Application, scientists from the State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, China, proposed a concept based on the basic principles of nonlinear frequency transformation, additional periodic phase (APP) from the disorder alignment, which can intercept the energy transmission channel of nonlinear light to fundamental light and compensate for mismatched phase. The APP concept means that after the light propagating at the coherence length Lc, the generated phase difference Δφ_PD was compensated by the additional phase difference Δφ_APP with Δφ_APP+Δφ_PD=2mπ (m is the integer). Based on the APP concept, a periodic ordered/disordered structure is introduced into crystal quartz by femtosecond laser writing technology to achieve an effective output from ultraviolet to deep-ultraviolet at the wavelength of 177.3nm. More interestingly, the APP phase matching may get rid of the limitations of birefringent and ferroelectric materials on nonlinear frequency conversion and should be applicable to all non-centrosymmetric nonlinear crystals for achieving effective output at any wavelength in the transmission range of the materials.

"To the best of our knowledge, the phase-matched deep-ultraviolet 177.3 nm generation was firstly achieved via quartz crystal with a high efficiency of 1.07‰." they added.

"This APP strategy may provide a versatile route for arbitrary nonlinear crystal in broadband wavelength. More importantly, this order/disorder alignment adds a variable physical parameter into optical system, thus leading to next-generation revolution in nonlinear or linear modulation and classical or quantum photonics." the scientists forecast.
-end-


Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences

Related Efficiency Articles:

Using physics to improve root canal efficiency
In Physics of Fluids, scientists report calculations with a model of a conical-shaped root canal inside a tooth.
Record efficiency for printed solar cells
A new study reports the highest efficiency ever recorded for full roll-to-roll printed perovskite solar cells.
New 5G switch provides 50 times more energy efficiency than currently exists
As 5G hits the market, new US Army-funded research has developed a radio-frequency switch that is more than 50 times more energy efficient than what is used today.
On the trail of organic solar cells' efficiency
Scientists at TU Dresden and Hasselt University in Belgium investigated the physical causes that limit the efficiency of novel solar cells based on organic molecular materials.
Wearable health tech gets efficiency upgrade
North Carolina State University engineers have demonstrated a flexible device that harvests the heat energy from the human body to monitor health.
Photoelectrochemical water-splitting efficiency hits 4.5%
Solar-to-fuel conversion offers a promising technology to solve energy problems, yet device performance could be limited by undesired sunlight absorption.
Green hydrogen: Research to enhance efficiency
Laboratory experiments and a parabolic flight campaign have enabled an international team of researchers from the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) to gain new insights into water electrolysis, in which hydrogen is obtained from water by applying electric energy.
New efficiency world record for organic solar modules
Researchers from Nuremberg and Erlangen has set a new record for the power conversion efficiency of organic photovoltaic modules.
A new method for quantifying crystal semiconductor efficiency
Japanese scientists have found a new way to successfully detect the efficiency of crystal semiconductors.
Improving efficiency, brightness of perovskite LEDs
Advances in organic phosphorescent materials are opening new opportunities for organic light-emitting diodes for combined electronics and light applications, including solar cells, photodiodes, optical fibers and lasers.
More Efficiency News and Efficiency Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.