Researchers add new tool to tumor-treatment arsenal

March 24, 2005

CINCINNATI--A new study demonstrates the potential effectiveness of treating tumors by combining agents that damage DNA with a drug that sensitizes cancer cells to these agents.

The research, led by George Thomas, PhD, professor at the University of Cincinnati's (UC) Genome Research Institute, and Heidi Lane of Novartis Institutes for Biomedical Research, appears in the March 25, 2005, issue of the journal Cell.

Dr. Thomas and a co-author Stefano Fumagalli, PhD, began this research while working at the Friedrich Miescher Institute for Biomedical Research in Basel, Switzerland, and completed these studies at UC's Genome Research Institute, where further studies continue.

"The use of DNA-damaging agents has revolutionized chemotherapy against a wide variety of cancers," says Dr. Thomas. "However, a narrow therapeutic window, combined with possible severe side effects, has greatly limited their broader use."

These factors, says Dr. Thomas, have probably contributed to recent reports of the under-dosing of patients and the failure to blunt the disease.

When cancer cells are treated with a DNA-damaging agent, a cancer-suppressing gene known as the "guardian of the cell" (a protein called p53) responds by either killing the cell, if the damage is too severe, or allowing the cancer cell to repair the damaged DNA. If the DNA is repaired, cells can continue to multiply.

The dilemma is that high doses of DNA-damaging agents can be toxic, and doses that are too low allow for DNA repair and further cell growth. Thus, says Dr. Thomas, there is need for drugs that can sensitize cells to lower doses of DNA-damaging agents to guarantee cell death, but without the toxic side effects.

The researchers studied the results of combining a DNA-damaging agent called cisplatin with RAD001, a derivative of the immunosuppressive drug rapamycin. Used in organ transplant patients, rapamycin and its derivatives have shown promising anti-tumor activity in phase I and II clinical trials.

RAD001 lowers the amount of DNA-damaging agent needed by blocking p53's DNA-repair function, automatically killing the cancer cells when agents like cisplatin are introduced.

"These findings provide the rationale for combining DNA-damaging agents with sensitizing agents like RAD001," says Dr. Thomas. "Since about 50 percent of all solid tumors contain p53, such a drug combination could dramatically improve the treatment of solid tumors."
-end-
The research was funded by a grant from Novartis Institutes for Biomedical Research and the Novartis Foundation, and by grants from the Collaborative Cancer Research Project of the Swiss Cancer League and the National Cancer Institute Mouse Models of Human Cancer Consortium. Dr. Thomas is a consultant for Novartis Institutes for Biomedical Research.

Additional study authors include Iwan Beuvink and Frederic Zilbermann, both of the Friedrich Miescher Institute for Biomedical Research, and Anne Boulay, Jonathan Hall, Francois Natt, Terence O'Reilly and Stephan Ruetz, all of Novartis Institutes for Biomedical Research.

University of Cincinnati

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.