Researchers create catalysts for use in hydrogen storage materials

March 24, 2009

RICHMOND, Va. (March 24, 2009) - A team of scientists from Virginia Commonwealth University, the University of Uppsala in Sweden, and the Savannah River National Laboratory have identified that carbon nanostructures can be used as catalysts to store and release hydrogen, a finding that may point researchers toward developing the right material for hydrogen storage for use in cars.

Scientific findings indicate that hydrogen has all the makings of an ideal alternative fuel because it is clean, renewable and abundant, but there are challenges to safely and efficiently store it.

"Currently there are no hydrogen storage materials that meet industry requirements. Our work paves the way to design and synthesize new and improved catalysts for the dehydrogenation of complex hydrides, taking us one step closer to finding the right material for hydrogen storage," said Puru Jena, Ph.D., distinguished professor in the VCU Department of Physics.

According to Jena, complex hydrides are a class of materials that have shown promise for the storage of hydrogen. Because complex hydrides are not reversible and removing hydrogen from them is difficult at temperatures less than 100°C, catalysts are needed to improve the reaction rates. However, previous studies indicate that the addition of catalysts creates defects in the hydrides.

The experimental group led by Ragaiy Zidan, Ph.D., a researcher at the Savannah National Laboratory, developed a solvent technique which allowed the introduction of carbon fullerenes and nanotubes without introducing any defects and also functioned as catalysts. Jena and the team at the University of Uppsala led by Rajeev Ahuja, Ph.D., performed theoretical calculations to illustrate the mechanism of how these catalysts work.
-end-
The study appears online and in the journal Nano Letters, a publication of the American Chemical Society. The work was supported by a grant from the U.S. Department of Energy. Read the article abstract at http://pubs.acs.org/doi/abs/10.1021/nl803498e.

About VCU and the VCU Medical Center: Virginia Commonwealth University is the largest university in Virginia and ranks among the top 100 universities in the country in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see www.vcu.edu.

Virginia Commonwealth University

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.