Genetic discovery may offer new avenue of attack against schistosomiasis

March 24, 2015

CORVALLIS, Ore. - Researchers at Oregon State University have discovered a group of genes in one species of snail that provide a natural resistance to the flatworm parasite that causes schistosomiasis, and opens the door to possible new drugs or ways to break the transmission cycle of this debilitating disease.

Schistosomiasis infects more than 200 million people in more than 70 countries, and is most common in areas with poor sanitation. It can cause chronic, lifelong disability, beginning with gastrointestinal problems and sometimes leading to liver damage, kidney failure, infertility and bladder cancer.

Schistosomisasis, which is native to Africa but has now spread around the world, has been called a neglected global pandemic. Its impact on human health rivals that of malaria.

However, the circular transmission of this complex disease depends upon spending some time as an infection in aquatic snails, where the number of parasites is greatly magnified. Snails may therefore offer a key opportunity to break the cycle of transmission.

The findings about this genetic discovery were just published in PLOS Genetics, by researchers from OSU and the Universite de Perpignan Via Domitia in France. The work was supported by the National Institutes of Health.

"We've found a new class of previously unknown genes that appear to control the ability to resist schistosomes," said Michael Blouin, a professor of integrative biology in the OSU College of Science. "It was found that a dominant genetic allele in this region conveys an eight-fold decrease in the risk of schistosomiasis infection.

"These genes are the type that, in other animal species, help to recognize pathogens and trigger an immune response," Blouin said. "This is important new information. With further research we'll learn more about the exact genetics and molecules that are involved as the parasite interacts with the host."

There are two possible applications of these results that could be pursued in an effort to treat or control this disease, the researchers said. One would be development of new drugs, which could be important - right now only a single medication, praziquantel, exists to help treat the disease. With its increasingly widespread use, resistance to that drug is possible.

Alternatively, researchers might attempt to insert these parasite-resistant genes into the species of snails that most commonly transmit schistosomiasis.

"There are ways to drive new genes into a population," said Jacob Tennessen, an OSU postdoctoral research associate and lead author on this study.

This is already being tried for some other diseases, the scientists noted, such as in mosquitos that transmit malaria. Modifying snail populations to be resistant is currently not practical, they said, but identifying new genes that control resistance to the parasite is a critical first step.
-end-
Editor's Note: Digital images to illustrate this research are available online:

Snails: https://flic.kr/p/ruoTZ9
Eggs: https://flic.kr/p/ruquoh

The study this story is based on is available online: http://bit.ly/1BgSrFf

Oregon State University

Related Schistosomiasis Articles from Brightsurf:

Finding the Achilles' heel of a killer parasite
Two studies led by UT Southwestern researchers shed light on the biology and potential vulnerabilities of schistosomes -- parasitic flatworms that cause the little-known tropical disease schistosomiasis.

Gastrointestinal innovation holds potential for treating variety of conditions
Proof-of-concept studies in models of lactose intolerance, diabetes and infectious disease demonstrate potential applications.

Pesticides speed the spread of deadly waterborne pathogens
Widespread use of pesticides can speed the transmission of the debilitating disease schistosomiasis, while also upsetting the ecological balances in aquatic environments that prevent infections, finds a new study led by researchers at the University of California, Berkeley.

Pesticides increase the risk of schistosomiasis, a tropical disease
Schistosomiasis is a severe infectious disease caused by parasitic worms.

Satellite, drone photos could help predict infections of a widespread tropical disease
An international team has discovered a cheap and efficient way to identify transmission hotspots for schistosomiasis.

Parasite paralysis: A new way to fight schistosomiasis?
Scientists have isolated a natural chemical that acts as a potent kryptonite against parasitic worms that burrow through human skin and cause devastating health problems.

Study shows interactions between bacteria and parasites
A team at the Technical University of Munich (TUM) has completed the first study of the effects of a simultaneous infection with blood flukes (schistosomes) and the bacterium Helicobacter pylori -- a fairly common occurrence in some parts of the world.

Super shrimp designed at Ben-Gurion University could increase yield and prevent disease
''We were able to achieve the monosex population without the use of hormones or genetic modifications and thus address two major agricultural considerations: monosex populations and ecological concerns,'' says Levy.

Poverty as disease trap
The realities of subsistence living in a region of Senegal hard hit by schistosomiasis make reinfection likely, despite mass drug administration.

How fat prawns can save lives
New research led by University of California, Berkeley, scientists provides a roadmap for how entrepreneurs can harness freshwater prawns' voracious appetite for snails to reduce the transmission of schistosomiasis-causing parasites while still making a profit selling the tasty animals as food.

Read More: Schistosomiasis News and Schistosomiasis Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.