Nav: Home

Creation of minimal cell with just the genes needed for independent life

March 24, 2016

Researchers have designed and synthesized a minimal bacterial genome, containing only the genes necessary for life, and consisting of just 473 genes. This advances the team's groundbreaking research published in 2010, in which they built and booted up the first self-replicating, synthetic bacterial cell, providing proof of principle that genomes can be designed in the computer, chemically made in the lab, and transplanted into a recipient cell to produce a new, self-replicating cell controlled only by the synthetic genome. After this the team - led by Craig Venter and Clyde Hutchison - set about their ultimate objective, a goal since 1995, to synthesize a minimal cell containing only the genes necessary to sustain life in its simplest form, an effort that could help scientists understand the function of every essential gene in a cell.

To do this work, Venter, Hutchison and colleagues again turned to Mycoplasma, bacteria possessing the smallest known genomes of any autonomously replicating cells. In 2010, the researchers had synthesized the genome of Mycoplasma mycoides. Here, based on existing literature, the researchers designed hypothetical minimal genomes in eight different segments, each of which could be tested in order to accurately classify constituent genes as essential or not. During this design-build-test process, the researchers also sought to identify quasi-essential genes, those needed for robust growth but not absolutely required for life. In a series of experiments, Venter, Hutchison and colleagues inserted transposons (or foreign genetic sequences) into numerous genes to disrupt their functions and determine which ones were necessary to the overall functioning of the bacteria. They whittled away at the synthetic, reduced genome, repeating experiments until no more genes could be disrupted and the genome was as small as possible. Critically, analysis revealed that some genes initially classified as "non-essential" do in fact perform the same essential function as a second gene; thus, one of the pair of genes needs to be retained in the minimal genome. A final version, dubbed JCVI-syn3.0, comprises 473 genes - a genome smaller than that of any autonomously replicating cell found in nature to date. The researchers' minimal genome lacks all DNA-modifying and restriction genes and most genes encoding lipoproteins. In contrast, almost all genes involved in reading and expressing the genetic information in the genome, as well as in preserving genetic information across generations, are retained. Interestingly, the precise biological functions of roughly 31% of the JCVI-syn3.0 genes remain undiscovered. However, several potential homologs for a number of these genes were found in other organisms, suggesting they encode universal proteins with functions yet to be determined. The JCVI-syn3.0 platform represents a versatile tool for investigating the core functions of life.
-end-


American Association for the Advancement of Science

Related Genome Articles:

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
Why do we need one pair of genome?
Scientists have unraveled how the cell replication process destabilizes when it has more, or less, than a pair of chromosome sets, each of which is called a genome -- a major step toward understanding chromosome instability in cancer cells.
A new genome for regeneration research
The first complete genome assembly of planarian flatworm reveals a treasure trove on the function and evolution of genes.
Decoding the Axolotl genome
The sequencing of the largest genome to date lays the foundation for novel insights into tissue regeneration.
The Down's syndrome 'super genome'
Only 20 percent of foetuses with trisomy 21 reach full term.
More Genome News and Genome Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab