Nav: Home

Nanocage surfaces get 'makeover' in room temperature

March 24, 2016

Kyoto University researchers have discovered a way of replacing surface ions of copper oxide nanocrystals at ambient conditions -- a feat that will make nanocage production considerably simpler.

Ionic semiconductor nanocages can be used as photoelectric conversion materials like those used in solar panels. Like a cage in the literal sense, nanocages can also encapsulate drugs and enzymes, promising further developments for targeted drug delivery.

The new method devised by Hsin-Lun Wu and colleagues at Kyoto University exploits preexisting crystal "molds" to make copper oxide nanocrystals morph into hollow copper sulfide nanocages through anion exchange, and ultimately into cadmium sulfide and zinc sulfide nanocages.

Nanocages appear in multiple crystal systems depending on their shapes, including cubic and hexagonal systems. Previously, in order to derive hexagonal zinc sulfide nanocages, it was necessary to apply high heat up to around 1000 degrees celcius to zinc sulfide nanocages with a cubic system.

With the Kyoto team's method, all it takes is to expose hexahedral or dodecahedral copper oxide nanocrystals to sodium sulfide; with this process, anions on the surface get replaced, transforming the surface of the nanocrystal to copper sulfide. In addition, the copper oxide in the inside dissolves so as to create a hollow nanocage. When these copper sulfide nanocages are exposed to cadmium nitrate or zinc nitrate, the copper cations become replaced to yield cadmium sulfide nanocages and zinc sulfide nanocages, respectively.

The authors write that such chemical conversions can "overcome the difficulties associated with controlling the size, shape, chemical composition, and crystal structure."

"We never expected that this could be done in such a simple step," says Toshiharu Teranishi, a senior author of the study.

The team hopes to test this method on nanocrystals with various ionic makeup. "Ionic nanocrystals come in so many flavors," said Teranishi. "We're working to find out whether this could be applied as a general method for not just copper oxide nanocrystals, but for other ionic nanocrystals as well."
-end-
The paper "Formation of pseudomorphic nanocages from Cu2O nanocrystals through anion exchange reactions" appeared March 18, 2016 in Science, with doi: 10.1126/science.351.6279.1276-l

Kyoto University is one of Japan and Asia's premier research institutions, founded in 1897 and responsible for producing numerous Nobel laureates and winners of other prestigious international prizes. A broad curriculum across the arts and sciences at both undergraduate and graduate levels is complemented by numerous research centers, as well as facilities and offices around Japan and the world. For more information please see: http://www.kyoto-u.ac.jp/en

See also:http://www.kyoto-u.ac.jp/en/research/research_results/2015/160318_1.html/

Kyoto University

Related Nanocrystals Articles:

Armored with plastic 'hair' and silica, new perovskite nanocrystals show more durability
Researchers at the Georgia Institute of Technology have demonstrated a novel approach aimed at addressing the perovskite's durability problem: encasing the perovskite inside a double-layer protection system made from plastic and silica.
Balancing elementary steps for boosting alkaline hydrogen evolution
Recently, Professors Jin-Song Hu and Li-Jun Wan from Institute of Chemistry, Chinese Academy of Sciences and their collaborators designed the nanocrystals with tunable Ni/NiO heterosurfaces to target Volmer and Heyrovsky/Tafel steps in the alkaline hydrogen evolution reaction (HER) and discovered that such bicomponent active sites on the surface should be balanced for promoting HER performance.
Single-particle spectroscopy of CsPbBr3 perovskite reveals the origin low electrolumine
Researchers from Tokyo Institute of Technology (Tokyo Tech) used the method of single-particle spectroscopy to study electroluminescence in light-emitting devices.
University of Konstanz researchers create uniform-shape polymer nanocrystals
Researchers from the University of Konstanz's Collaborative Research Centre (CRC) 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' successfully generate uniform-shape nanocrystals using direct polymerization
Understanding the (ultra-small) structure of silicon nanocrystals
New research provides insight into the structure of silicon nanocrystals, a substance that promises to provide efficient lithium ion batteries that power your phone to medical imaging on the nanoscale.
Squeezed nanocrystals: A new model predicts their shape when blanketed under graphene
In a collaboration between the US Department of Energy's Ames Laboratory and Northeastern University, scientists have developed a model for predicting the shape of metal nanocrystals or 'islands' sandwiched between or below two-dimensional (2D) materials such as graphene.
Invention by NUS chemists opens the door to safer and less expensive X-ray imaging
Professor Liu Xiaogang from the National University of Singapore led a team to develop novel lead halide perovskite nanocrystals that are highly sensitive to X-ray irradiation.
Hidden gapless states on the path to semiconductor nanocrystals
When chemists from the Institute of Physical Chemistry of the Polish Academy of Sciences in Warsaw were starting work on yet another material designed for the efficient production of nanocrystalline zinc oxide, they didn't expect any surprises.
Scientists squeeze nanocrystals in a liquid droplet into a solid-like state and back again
A team led by scientists at Berkeley Lab found a way to make a liquid-like state behave more like a solid, and then to reverse the process.
Scientists create a UV detector based on nanocrystals synthesized by using ion implantation
Scientists at the Lobachevsky University have been working for several years to develop solar-blind photodetectors operating in the UV spectral band.
More Nanocrystals News and Nanocrystals Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab