Nav: Home

New methods of enhancing efficiency of genetic engineering in mice and rats

March 24, 2016

A group of researchers led by Tomoji Mashimo, Associate Professor, Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University and Kazuto Yoshitomi, Assistant Professor, Mouse Genomics Resource Laboratory, National Institute of Genetics, Research Organization of Information and Systems developed two new gene modification methods: lsODN (long single-stranded oligodeoxynucleotide) and 2H2OP (two-hit two-oligo with plasmid). These methods use CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) -Cas systems and ssODN (single-stranded oligodeoxynucleotide).

CRISPR-Cas systems have made gene modification in mice and rats easy. By introducing Cas9 messenger RNA and gRNA, gRNA recognizes targeting DNA and Cas9 cuts the targeting site. DNA breaks are repaired by non-homologous end joining, which causes DNA mutations, resulting in gene knock-out.

Likewise, when ssODN is introduced with Cas9-gRNA, DNA breaks are repaired through homology-directed repair using donor DNA, resulting in knock-in of DNA sequences with one to dozens of bases (bp). However, ssODN allowed the synthesis of oligos up to 200 bp, therefore, which made it difficult to knock in large DNA sequences such as GFP (green fluorescent protein).

With these two gene modification methods, this group succeeded in achieving efficient and precise knock-in of GFP genes, the introduction of large genomic regions (approx. 200kbp), which was conventionally impossible, as well as replacing rat genes with human-derived genes, or generating gene humanized animals.

These two knock-in methods will increase the efficiency of genetic engineering in mice and rats, as well as other various species of organisms, and will become very useful techniques for producing new genetically engineered organisms. It is highly anticipated that these genetically engineered organisms will be used in a wide field of studies such as drug development, translational research, and regenerative medicine.
-end-


Osaka University

Related Genetics Articles:

Mapping millet genetics
New DNA sequences will aid in the development of improved millet varieties
Genetics to feed the world
A study, published in Nature Genetics, demonstrated the effectiveness of the technology known as genomic selection in a wheat improvement program.
Genetics researchers find new neurodevelopmental syndrome
Researchers have identified a gene mutation that causes developmental delay, intellectual disability, behavioral abnormalities and musculoskeletal problems in children.
The genetics of cancer
A research team has identified a new circular RNA (ribonucleic acid) that increases tumor activity in soft tissue and connective tissue tumors.
New results on fungal genetics
An international team of researchers has found unusual genetic features in fungi of the order Trichosporonales.
Mouse genetics influences the microbiome more than environment
Genetics has a greater impact on the microbiome than maternal birth environment, at least in mice, according to a study published this week in Applied and Environmental Microbiology.
New insights into genetics of fly longevity
Alexey Moskalev, Ph.D., Head of the Laboratory of Molecular Radiobiology and Gerontology Institute of Biology, and co-authors from the Institute of biology of Komi Science Center of RAS, Engelgard's Institute of molecular biology, involved in the study of the aging mechanisms and longevity of model animals announce the publication of a scientific article titled: 'The Neuronal Overexpression of Gclc in Drosophila melanogaster Induces Life Extension With Longevity-Associated Transcriptomic Changes in the Thorax' in Frontiers in Genetics - a leading open science platform.
Some personal beliefs and morals may stem from genetics
Penn State researchers found that while parents can help encourage their children to develop into responsible, conscientious adults, there is an underlying genetic factor that influences these traits, as well.
X chromosome: how genetics becomes egalitarian
In cell biology, men and women are unequal: men have an X chromosome, while women have two.
The link between obesity, the brain, and genetics
Clinicians should consider how the way we think can make us vulnerable to obesity, and how obesity is genetically intertwined with brain structure and mental performance, according to new research.
More Genetics News and Genetics Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab