Nav: Home

High-throughput screen identifies potential henipavirus drug target

March 24, 2016

The closely related Hendra and Nipah viruses (referred to jointly as henipaviruses) are deadly cousins of the more common mumps, measles, and respiratory syncytial viruses, all members of the paramyxovirus family. Henipavirus outbreaks are on the rise, but little is known about them, partly because research has to be conducted under extreme level containment conditions.

A study published on March 24, 2016 in PLOS Pathogens reports the first high-throughput RNA interference screen for host genes that are essential for live henipavirus infection of human cells, and identifies a specific cell protein called fibrillarin as a potential target for drugs against henipaviruses and other paramyxoviruses.

Henipaviruses infection is common in bats, and outbreaks in Australia and Malaysia have been linked to human contact with local fruit bats. No human vaccines or treatments exist, and because of high mortality rates (between 35 and 90% of patients known to be infected died in recent outbreaks) the viruses have been classified as biosafety-level 4 (BSL-4) pathogens the highest biosafety containment level. A multi-disciplinary research team led by Cameron Stewart of the CSIRO Australian Animal Health Laboratory in East Geelong, Victoria, systematically interfered with the function of genes in human cells to identify host genes that are needed for henipavirus infection.

In their initial screen, the researchers identified several hundred human genes whose function was necessary for successful henipavirus infection. They subsequently honed in on one of them, called fibrillarin, which codes for a protein present in the nucleolus. The nucleolus is the largest structure in the nucleus of mammalian cells and functions as the assembly room for so-called ribosomes which are subsequently exported out of the nucleus into the cytoplasm and become the protein factories of the cell.

To explore possible mechanisms, the researchers examined closely which step of the viral life cycle was blocked by interfering with fibrillarin function. Fibrillarin, they found, is not necessary for viral entry into the host cells but required for the early synthesis of viral RNA. More specifically, the researchers report that mutating the catalytic activity of fibrillarin inhibits henipavirus infection, suggesting that this human enzyme could be targeted therapeutically to combat henipavirus infections.

When they tested whether fibrillarin function was required for successful infection of human cells by other paramyxoviruses, the researchers found that this was indeed the case for all the family members tested, including the mumps and measles pathogens. This raises the potential that drugs that interfere with fibrillarin function might have broader use against all of these viruses.

To their knowledge, the researchers say, the study is the first of its kind to be conducted in a BSL-4 facility. They suggest that it "serves as a blueprint for how high-throughput RNAi screens can be performed under high biocontainment conditions".

They conclude that the study "reveals a previously unappreciated role for nucleolar proteins with methyltransferase activity such as fibrillarin in henipavirus infection, and suggests that methyltransferase enzymes represent a potential target for development of an anti-henipavirus drug".
-end-
Contact:

Cameron Stewart
cameron.stewart@csiro.au
Ph.: 61.3.5227.5601

Kaylene Simpson
Kaylene.simpson@petermac.org
Ph.: 61.3.9656.1790

In your coverage please use this URL to provide access to the freely available article in PLOS Pathogens: http://dx.plos.org/10.1371/journal.ppat.1005478

Please contact plospathogens@plos.org if you would like more information.

Funding: This work was supported by The Commonwealth Scientific and Industrial Research Organisation and the Australian National Health and Medical Research Council (grant 1042452 to CRS). The Victorian Centre for Functional Genomics is funded by the Australian Cancer Research Foundation (ACRF), the Victorian Department of Industry, Innovation and Regional Development (DIIRD), the Australian Phenomics Network (APN) and supported by funding from the Australian Government's Education Investment Fund through the Super Science Initiative, the Australasian Genomics Technologies Association (AMATA), the Brockhoff Foundation and the Peter MacCallum Cancer Centre Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Citation: Deffrasnes C, Marsh GA, Foo CH, Rootes CL, Gould CM, Grusovin J, et al. (2016) Genome-wide siRNA Screening at Biosafety Level 4 Reveals a Crucial Role for Fibrillarin in Henipavirus Infection. PLoS Pathog 12(3): e1005478. doi:10.1371/journal.ppat.1005478

About PLOS Pathogens

PLOS Pathogens is a peer-reviewed, open-access science journal that advances the understanding of bacteria, fungi, parasites, prions, and viruses, and how these pathogens interact with their host organisms. For more information, visit http://www.plospathogens.org and follow @PLOSPathogens on Twitter.

Media and Copyright Information

For information about PLOS Pathogens relevant to journalists, bloggers and press officers, including details of our press release process and embargo policy, visit http://journals.plos.org/plospathogens/s/press-and-media.

PLOS Journals publish under a Creative Commons Attribution License, which permits free reuse of all materials published with the article, so long as the work is cited.

About the Public Library of Science

The Public Library of Science (PLOS) PLOS is a nonprofit publisher and advocacy organization founded to accelerate progress in science and medicine by leading a transformation in research communication. For more information, visit http://www.plos.org.

Disclaimer

This press release refers to upcoming articles in PLOS Pathogens. The releases have been provided by the article authors and/or journal staff. Any opinions expressed in these are the personal views of the contributors, and do not necessarily represent the views or policies of PLOS. PLOS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

PLOS

Related Pathogens Articles:

On the trail of pathogens in meat, eggs and raw milk
To make food even safer for humans, experts from scientific institutions, food regulatory authorities and the business community will discuss current developments and strategies at the 'Zoonoses and Food Safety' Symposium at the German Federal Institute for Risk Assessment (BfR) on 4 and 5 November 2019, in Berlin-Marienfelde.
Protozoans and pathogens make for an infectious mix
The new observation that strains of V. cholerae can be expelled into the environment after being ingested by protozoa, and that these bacteria are then primed for colonisation and infection in humans, could help explain why cholera is so persistent in aquatic environments.
Your energy-efficient washing machine could be harboring pathogens
For the first time ever, investigators have identified a washing machine as a reservoir of multidrug-resistant pathogens.
Picky pathogens help non-native tree species invade
Trees have many natural enemies, including pathogens that have evolved to attack certain tree species.
How plague pathogens trick the immune system
Yersinia have spread fear and terror, especially in the past, but today they have still not been completely eradicated.
Metabolomic profiling of antibody response to periodontal pathogens
At the 97th General Session & Exhibition of the International Association for Dental Research (IADR), held in conjunction with the 48th Annual Meeting of the American Association for Dental Research (AADR) and the 43rd Annual Meeting of the Canadian Association for Dental Research (CADR), Jaakko Leskela, University of Helsinki, Finland, gave an oral presentation on 'Metabolomic Profiling of Antibody Response to Periodontal Pathogens.'
Pathogens may have facilitated the evolution of warm-blooded animals
Animals first developed fever as a response to infections: the higher body temperatures primed their immune systems.
Paper stickers to monitor pathogens are more effective than swabs
Using paper stickers to collect pathogens on surfaces where antisepsis is required, such as in food processing plants, is easier, and less expensive than swabbing, yet similarly sensitive.
Dangerous pathogens use this sophisticated machinery to infect hosts
A detailed new model of a bacterial secretion system provides directions for developing precisely targeted antibiotics.
New computational tool could change how we study pathogens
A sophisticated new analysis too incorporating advanced mathematical strategies could help revolutionize the way researchers investigate the spread and distribution of dangerous, fast-evolving disease vectors.
More Pathogens News and Pathogens Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab