Nav: Home

Study finds vast diversity among viruses that infect bacteria

March 24, 2016

Viruses that infect bacteria are among the most abundant life forms on Earth. Our oceans and soils, and potentially even our own bodies, would be overrun with bacteria were it not for bacteria-eating viruses--called bacteriophages--that keep the microbial balance in check.

Now, a new study at Washington University School of Medicine in St. Louis suggests that bacteriophages made of RNA - a close chemical cousin of DNA - likely play a much larger role in shaping the bacterial makeup of worldwide habitats than previously recognized.

The research, publishing on March 24 in the Open Access journal PLOS Biology, identifies 122 new types of RNA bacteriophages in diverse ecological niches, providing an opportunity to define their contributions to ecology, and potentially to fight bacterial infections, particularly those resistant to antibiotics.

"Lots of DNA bacteriophages have been identified, but there's an incredible lack of understanding about RNA bacteriophages," explained senior author David Wang, PhD, associate professor of molecular microbiology. "They have been largely ignored - relatively few were known to exist, and for the most part scientists haven't bothered to look for them. This study puts RNA bacteriophages on the map and opens many new avenues of exploration."

Wang estimates that of the more than 1,500 bacteriophages that have been identified, 99 percent of them have DNA genomes. The advent of large-scale genome sequencing has helped scientists identify DNA bacteriophages in the human gut, skin and blood as well as in the environment, but few researchers have looked for RNA bacteriophages in those samples.

First author Siddharth Krishnamurthy and the team, including Dan Barouch, MD, PhD, Beth Israel Deaconess Medical Center and Harvard Medical School, identified RNA bacteriophages by analyzing data from oceans, sewage, soils, crabs, sponges and barnacles, as well as insects, mice and rhesus macaques.

RNA bacteriophages have been shown to infect gram-negative bacteria, which have become increasingly resistant to antibiotics and are the source of many infections in health care settings. But the researchers also showed for the first time that these bacteriophages may also infect gram-positive bacteria, responsible for strep and staph infections as well as MRSA.

"What we know about RNA bacteriophages in any environment is limited," Wang said. "But you can think of bacteriophages and bacteria as having a predator-prey relationship. We need to understand the dynamics of that relationship. Eventually, we'd like to manipulate that dynamic to use phages to selectively kill particular bacteria."
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://dx.plos.org/10.1371/journal.pbio.1002409

Press-only preview: https://www.plos.org/wp-content/uploads/2016/03/journal.pbio_.1002409.pdf

Contact: Judy Martin Finch, 314-286-0105, martinju@wustl.edu

Citation: Krishnamurthy SR, Janowski AB, Zhao G, Barouch D, Wang D (2016) Hyperexpansion of RNA Bacteriophage Diversity. PLoS Biol 14(3): e1002409. doi:10.1371/journal.pbio.1002409

Funding: DW holds an investigator in the pathogenesis of infectious diseases award from the Burroughs-Wellcome Fund. This study was supported in part by the US National Institutes of Health under the grants OD011170, AI078526 and AI096040 to DB. SRK was supported in part by the theUS National Institutes of Health under the training grant T32 AI 007172 34. ABJ was supported in part by the the US National Institutes of Health under the training grant T32 AI 106688 02. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

About Biology

PLOS Biology is an open-access, peer-reviewed journal published by PLOS, featuring research articles of exceptional significance, originality, and relevance in all areas of biology. For more information visit http://www.plosbiology.org, or follow @PLOSBiology on Twitter.

Media and Copyright Information

For information about PLOS Biology relevant to journalists, bloggers and press officers, including details of our press release process and embargo policy, visit http://journals.plos.org/plosbiology/s/press-and-media.

PLOS Journals publish under a Creative Commons Attribution License, which permits free reuse of all materials published with the article, so long as the work is cited.

About the Public Library of Science

The Public Library of Science (PLOS) PLOS is a nonprofit publisher and advocacy organization founded to accelerate progress in science and medicine by leading a transformation in research communication. For more information, visit http://www.plos.org.

Disclaimer

This press release refers to upcoming articles in PLOS Biology. The releases have been provided by the article authors and/or journal staff. Any opinions expressed in these are the personal views of the contributors, and do not necessarily represent the views or policies of PLOS. PLOS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

PLOS

Related Bacteria Articles:

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
More Bacteria News and Bacteria Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab