Nav: Home

Unraveling the mystery of stem cells

March 24, 2016

How do neurons become neurons? They all begin as stem cells, undifferentiated and with the potential to become any cell in the body.

Until now, however, exactly how that happens has been somewhat of a scientific mystery. New research conducted by UC Santa Barbara neuroscientists has deciphered some of the earliest changes that occur before stems cells transform into neurons and other cell types.

Working with human embryonic stems cells in petri dishes, postdoctoral fellow Jiwon Jang discovered a new pathway that plays a key role in cell differentiation. The findings appear in the journal Cell.

"Jiwon's discovery is very important because it gives us a fundamental understanding of the way stem cells work and the way they begin to undergo differentiation," said senior author Kenneth S. Kosik, the Harriman Professor of Neuroscience Research in UCSB's Department of Molecular, Cellular, and Developmental Biology. "It's a very fundamental piece of knowledge that had been missing in the field."

When stem cells begin to differentiate, they form precursors: neuroectoderms that have the potential to become brain cells, such as neurons; or mesendoderms, which ultimately become cells that comprise organs, muscles, blood and bone.

Jang discovered a number of steps along what he and Kosik labeled the PAN (Primary cilium, Autophagy Nrf2) axis. This newly identified pathway appears to determine a stem cell's final form.

"The PAN axis is a very important player in cell fate decisions," explained Jang. "G1 lengthening induces cilia protrusion and the longer those cellular antennae are exposed, the more signals they can pick up."

For some time, scientists have known about Gap 1 (G1), the first of four phases in the cell cycle, but they weren't clear about its role in stem cell differentiation. Jang's research demonstrates that in stem cells destined to become neurons, the lengthening phase of G1 triggers other actions that cause stem cells to morph into neuroectoderms.

During this elongated G1 interval, cells develop primary cilia, antennalike protrusions capable of sensing their environment. The cilia activate the cells' trash disposal system in a process known as autophagy.

Another important factor is Nrf2, which monitors cells for dangerous molecules such as free radicals -- a particularly important job for healthy cell formation.

"Nrf2 is like a guardian to the cell and makes sure the cell is functioning properly," said Kosik, co-director of the campus's Neuroscience Research Institute. "Nrf2 levels are very high in stem cells because stem cells are the future. Without Nrf2 watching out for the integrity of the genome, future progeny are in trouble."

Jang's work showed that levels of Nrf2 begin to decline during the elongated G1 interval. This is significant, Kosik noted, because Nrf2 doesn't usually diminish until the cell has already started to differentiate.

"We thought that, under the same conditions if the cells are identical, that both would differentiate the same way, but that is not what we found," Jang said. "Cell fate is controlled by G1 lengthening, which extends cilia's exposure to signals from their environment. That is one cool concept."
-end-


University of California - Santa Barbara

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.