Nav: Home

Embryo development: Some cells are more equal than others even at four-cell stage

March 24, 2016

Genetic 'signatures' of early-stage embryos confirm that our development begins to take shape as early as the second day after conception, when we are a mere four cells in size, according to new research led by the University of Cambridge and EMBL-EBI. Although they seem to be identical, the cells of the two day-old embryo are already beginning to display subtle differences.

Once an egg has been fertilised by a sperm, it divides several times, becoming a large free-floating ball of stem cells. At first, these stem cells are 'totipotent', the state at which a stem cell can divide and grow and produce everything--every single cell of the whole body and the placenta, to attach the embryo to the mother's womb. The stem cells then change to a 'pluripotent' state, in which their development is restricted to generating the cells of the whole body, but not the placenta. However, the point during development at which cells begin to show a preference for becoming a specific cell type is unclear.

Now, in a study published in the journal Cell, scientists at the University of Cambridge and the European Bioinformatics Institute (EMBL-EBI) suggests that as early as the four-cell embryo stage, the cells are indeed different.

The researchers used the latest sequencing technologies to model embryo development in mice, looking at the activity of individual genes at a single cell level. They showed that some genes in each of the four cells behaved differently. The activity of one gene in particular, Sox21, differed the most between cells; this gene forms part of the 'pluripotency network'. The team found when this gene's activity was reduced, the activity of a master regulator that directs cells to develop into the placenta increased.

"We know that life starts when a sperm fertilises an egg, but we're interested in when the important decisions that determine our future development occur," says Professor Magdalena Zernicka-Goetz from the Department of Physiology, Development and Neuroscience at the University of Cambridge. "We now know that even as early as the four-stage embryo - just two days after fertilisation - the embryo is being guided in a particular direction and its cells are no longer identical."

Dr John Marioni of EMBL-EBI, the Wellcome Trust Sanger Institute and the Cancer Research UK Cambridge Institute, adds: "We can make use of powerful sequencing tools to deepen our understanding of the molecular mechanisms that drive development in individual cells. Because of these high-resolution techniques, we are now able to see the genetic and epigenetic signatures that indicate the direction in which early embryonic cells will tend to travel."
-end-
The research was funded by the Wellcome Trust, the European Molecular Biology Laboratory and Cancer Research UK.

Reference


Heterogeneity in Oct4 and Sox2 Targets Biases Cell Fate in Four-Cell Mouse Embryos. Cell; 24 March 2016. DOI: 10.1016/j.cell.2016.01.047

Contact details


Craig Brierley
Head of Research Communications
University of Cambridge
Tel: +44 (0)1223 766205
Mob: +44 (0)7957 468218
Email: craig.brierley@admin.cam.ac.uk

About the University of Cambridge


The mission of the University of Cambridge is to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence. To date, 90 affiliates of the University have won the Nobel Prize.

Founded in 1209, the University comprises 31 autonomous Colleges, which admit undergraduates and provide small-group tuition, and 150 departments, faculties and institutions.

Cambridge is a global university. Its 19,000 student body includes 3,700 international students from 120 countries. Cambridge researchers collaborate with colleagues worldwide, and the University has established larger-scale partnerships in Asia, Africa and America.

The University sits at the heart of one of the world's largest technology clusters. The 'Cambridge Phenomenon' has created 1,500 hi-tech companies, 14 of them valued at over US$1 billion and two at over US$10 billion. Cambridge promotes the interface between academia and business, and has a global reputation for innovation. www.cam.ac.uk

University of Cambridge

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...