Nav: Home

Land bridges linking ancient India and Eurasia were 'freeways' for biodiversity exchange

March 24, 2016

LAWRENCE -- For about 60 million years during the Eocene epoch, the Indian subcontinent was a huge island. Having broken off from the ancient continent of Gondwanaland, the Indian Tectonic Plate drifted toward Eurasia.

During that gradual voyage, the subcontinent saw a blossoming of exceptional wildlife, and when the trove of unique biodiversity finally made contact with bigger Eurasia, the exchange of animals and plants between these areas laid the foundations for countless modern species.

"Today, mainland Asia and India have all this unique biodiversity -- but did the mainland Asian biodiversity come from India, or did the Indian biodiversity come from other regions of Asia?" asked Jesse Grismer, doctoral candidate with the Biodiversity Institute at the University of Kansas.

Grismer claims the answer depends on the organism in question.

"If you picked Asian freshwater crabs, you'd see they started in India and made their way to Asia, but if you picked dragon lizards you'd get the opposite answer," he said. "The opposing distribution patterns created a lot of conflict for a while. You'd see papers saying, 'Everything came from India,' and others saying, 'No, everything came from Indochina and Southeast Asia.' But they were looking at opposite ends of the same pattern, just with different animals."

Now, Grismer has authored research appearing in the journal BMC Evolutionary Biology showing that before the final collision of Eurasia and the Indian subcontinent, land bridges between the landmasses may have served as "freeways" of biodiversity exchange that flowed in both directions.

"Our paper shows that as India was approaching Eurasia, it was connecting by ephemeral land bridges," Grismer said. "It was these land bridges that allowed for dispersal and exchange of all these species. There were two areas of suitable habitat separated by unsuitable oceans. But once that new area was exposed, species were allowed to disperse into mainland Asia or India, respectively, areas that these species had not been able to previously exploit."

To arrive at their conclusion, Grismer and his co-authors performed a phylogenomic analysis of Indian Dragon Lizards, revealing multiple origins in Southeast Asia. The researchers included Alana Alexander, Phillip Wagner, Scott L. Travers, Matt D. Buehler, Luke J. Welton and Rafe M. Brown from KU and James A. Schulte II from Clarkson University. Grismer also credits his KU lab mates Chan Kin Onn, Robin Abraham and Carl Hutter with help on the research via "a lot of fruitful discussion."

Importantly, the team showed that two land bridges connected the Indian subcontinent to Eurasia at two different times during the early to middle Eocene, some 35 to 40 million years ago.

"This hypothesis is based on evolutionary relationships between the species used in this study," he said. Grismer added that his team blended new genomic data with previous studies and combined that analysis with new geologic studies about Eocene geology.

The KU researcher said Indian Dragon Lizards, or the Draconinae subfamily of the lizard family Agamidae, are an ideal species to study in order to piece together a picture of the exchange of biodiversity that took place due to the land bridges.

"Dragon lizards added new light because of the previous work that has been done on them, plus our new samples," Grismer said. "They're quite diverse as a group, distributed equally, and so they're great study system for testing a new hypotheses."

He added that conservation of certain species of Dragon Lizards and keeping them out of the international pet trade would help make possible more opportunities for understanding the history of this unique group of family of lizards.

"We were only able to do this because we had all these species to work with, and a future study with more data and new species could find a new result to this question " he said. "Animals in general tell us a lot about our world and how we fit into it. I think protecting them is just as important as anything else we do."
-end-


University of Kansas

Related Biodiversity Articles:

About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.
Bargain-hunting for biodiversity
The best bargains for conserving some of the world's most vulnerable salamanders and other vertebrate species can be found in Central Texas and the Appalachians, according to new conservation tools developed at the National Institute for Mathematical and Biological Synthesis (NIMBioS) at the University of Tennessee, Knoxville.
Researchers solve old biodiversity mystery
The underlying cause for why some regions are home to an extremely large number of animal species may be found in the evolutionary adaptations of species, and how they limit their dispersion to specific natural habitats.
Biodiversity offsetting is contentious -- here's an alternative
A new approach to compensate for the impact of development may be an effective alternative to biodiversity offsetting -- and help nations achieve international biodiversity targets.
Biodiversity yields financial returns
Farmers could increase their revenues by increasing biodiversity on their land.
Biodiversity and wind energy
The location and operation of wind energy plants are often in direct conflict with the legal protection of endangered species.
Mapping global biodiversity change
A new study, published in Science, which focuses on mapping biodiversity change in marine and land ecosystems shows that loss of biodiversity is most prevalent in the tropic, with changes in marine ecosystems outpacing those on land.
What if we paid countries to protect biodiversity?
Researchers from Sweden, Germany, Brazil and the USA have developed a financial mechanism to support the protection of the world's natural heritage.
Grassland biodiversity is blowing in the wind
Temperate grasslands are the most endangered but least protected ecosystems on Earth.
The loss of biodiversity comes at a price
A University of Cordoba research team ran the numbers on the impact of forest fires on emblematic species using the fires in Spain's Doñana National Park and Segura mountains in 2017 as examples
More Biodiversity News and Biodiversity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.