Nav: Home

Crumpled graphene makes ultra-sensitive cancer DNA detector

March 24, 2020

CHAMPAIGN, Ill. -- Graphene-based biosensors could usher in an era of liquid biopsy, detecting DNA cancer markers circulating in a patient's blood or serum. But current designs need a lot of DNA. In a new study, crumpling graphene makes it more than ten thousand times more sensitive to DNA by creating electrical "hot spots," researchers at the University of Illinois at Urbana-Champaign found.

Crumpled graphene could be used in a wide array of biosensing applications for rapid diagnosis, the researchers said. They published their results in the journal Nature Communications.

"This sensor can detect ultra-low concentrations of molecules that are markers of disease, which is important for early diagnosis," said study leader Rashid Bashir, a professor of bioengineering and the dean of the Grainger College of Engineering at Illinois. "It's very sensitive, it's low-cost, it's easy to use, and it's using graphene in a new way."

While the idea of looking for telltale cancer sequences in nucleic acids, such as DNA or its cousin RNA, isn't new, this is the first electronic sensor to detect very small amounts, such as might be found in a patient's serum, without additional processing.

"When you have cancer, certain sequences are overexpressed. But rather than sequencing someone's DNA, which takes a lot of time and money, we can detect those specific segments that are cancer biomarkers in DNA and RNA that are secreted from the tumors into the blood," said Michael Hwang, the first author of the study and a postdoctoral researcher in the Holonyak Micro and Nanotechnology Lab at Illinois.

Graphene - a flat sheet of carbon one atom thick - is a popular, low-cost material for electronic sensors. However, nucleic-acid sensors developed so far require a process called amplification - isolating a DNA or RNA fragment and copying it many times in a test tube. This process is lengthy and can introduce errors. So Bashir's group set out to increase graphene's sensing power to the point of being able to test a sample without first amplifying the DNA.

Many other approaches to boosting graphene's electronic properties have involved carefully crafted nanoscale structures. Rather than fabricate special structures, the Illinois group simply stretched out a thin sheet of plastic, laid the graphene on top of it, then released the tension in the plastic, causing the graphene to scrunch up and form a crumpled surface.

They tested the crumpled graphene's ability to sense DNA and a cancer-related microRNA in both a buffer solution and in undiluted human serum, and saw the performance improve tens of thousands of times over flat graphene.

"This is the highest sensitivity ever reported for electrical detection of a biomolecule. Before, we would need tens of thousands of molecules in a sample to detect it. With this device, we could detect a signal with only a few molecules," Hwang said. "I expected to see some improvement in sensitivity, but not like this."

To determine the reason for this boost in sensing power, mechanical science and engineering professor Narayana Aluru and his research group used detailed computer simulations to study the crumpled graphene's electrical properties and how DNA physically interacted with the sensor's surface.

They found that the cavities served as electrical hotspots, acting as a trap to attract and hold the DNA and RNA molecules.

"When you crumple graphene and create these concave regions, the DNA molecule fits into the curves and cavities on the surface, so more of the molecule interacts with the graphene and we can detect it," said graduate student Mohammad Heiranian, a co-first author of the study. "But when you have a flat surface, other ions in the solution like the surface more than the DNA, so the DNA does not interact much with the graphene and we cannot detect it."

In addition, crumpling the graphene created a strain in the material that changed its electrical properties, inducing a bandgap - an energy barrier that electrons must overcome to flow through the material - that made it more sensitive to the electrical charges on the DNA and RNA molecules.

"This bandgap potential shows that crumpled graphene could be used for other applications as well, such as nano circuits, diodes or flexible electronics," said Amir Taqieddin, a graduate student and coauthor of the paper.

Even though DNA was used in the first demonstration of crumpled graphene's sensitivity for biological molecules, the new sensor could be tuned to detect a wide variety of target biomarkers. Bashir's group is testing crumpled graphene in sensors for proteins and small molecules as well.

"Eventually the goal would be to build cartridges for a handheld device that would detect target molecules in a few drops of blood, for example, in the way that blood sugar is monitored," Bashir said. "The vision is to have measurements quickly and in a portable format."
-end-
The National Science Foundation supported this work through the Illinois Materials Research Science and Engineering Center.

Editor's notes: To reach Rashid Bashir, email rbashir@illinois.edu. To reach Narayan Aluru, call 217-333-1180; email aluru@illinois.edu. To reach Michael Hwang, email mth@illinois.edu.

The paper "Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors" is available from press@nature.com.

University of Illinois at Urbana-Champaign, News Bureau

Related Cancer Articles:

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.
Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.
Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.