Study shows key factors for reducing brain damage from cardiac arrest

March 24, 2020

Osaka, Japan - People who suffer cardiac arrest usually have low likelihood of survival, especially if it happens out of the hospital. Those who do survive can have neurological damage due to the lack of oxygen-rich blood reaching their brain. Cardiopulmonary resuscitation (CPR) can help maintain this blood flow, but it's not always successful. Extracorporeal CPR (ECPR) may be an option, but it can be costly and it's not always clear which patients it will benefit.

Now, Osaka University-led research may have uncovered how to more effectively use ECPR for better outcomes. The researchers reported their findings in the journal, Circulation.

"Standard CPR uses chest compressions to manually stimulate blood flow to vital organs, which can help limit long-term neurological damage," explains Tasuku Matsuyama, the study's lead author. "With ECPR, blood is removed from a vein and oxygenated blood is pumped into an artery. This is a more effective way to maintain tissue function until normal heart rhythms can be restored."

Right now, however, there is little evidence-based guidance on which patients will show the most neurological benefit from ECPR.

The researchers sought this evidence through a multicenter clinical study of people who had suffered out-of-hospital cardiac arrest (OHCA). In what was called the CRITICAL study, the aim was to understand the factors that predict post-ECPR outcomes.

"We aimed to see whether low-flow duration -- the length of time from when a patient is given standard CPR to when they receive ECPR -- impacts the neurological outcome for OHCA patients," says Taro Irisawa, who led CRITICAL. "We also wanted to understand if there were any differences in ECPR benefit for patients with certain types of heart rhythm that respond to defibrillation."

The researchers prospectively followed 256 OHCA patients at 14 hospitals in Osaka. These patients had initially been given CPR either by bystanders or EMS personnel before receiving ECPR and in-hospital treatment.

The study found that as the time to receiving ECPR decreased, the chance of maintaining brain function went considerably up. Also, when undergoing the same amount of time before receiving ECPR, those who had heart rhythms that responded to defibrillation had much better odds of maintaining brain function than those who did not.

"Our study strongly indicates that reducing the time to ECPR can significantly improve the likelihood of OHCA patients preserving their neurological function, especially those who respond to defibrillation," Irisawa concludes. "We expect that our findings in the CRITICAL study can inform future revisions to international CPR guidelines. This will improve outcomes for these patients."
-end-
The article, "Impact of low-flow duration on favorable neurological outcomes of extracorporeal cardiopulmonary resuscitation after out-of-hospital cardiac arrest: A multicenter prospective study" was published in Circulation at DOI: https://doi.org/10.1161/CIRCULATIONAHA.119.044285

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Osaka University

Related Blood Flow Articles from Brightsurf:

Brain regions with impaired blood flow have higher tau levels
In Alzheimer's disease, impaired blood flow to brain regions coincides with tau protein buildup.

3D ultrasound enables accurate, noninvasive measurements of blood flow
A 3D ultrasound system provides an effective, noninvasive way to estimate blood flow that retains its accuracy across different equipment, operators and facilities, according to a new study.

Blood flow recovers faster than brain in micro strokes
Work by a Rice neurobiologist shows that increased blood flow to the brain is not an accurate indicator of neuronal recovery after a microscopic stroke.

Exercise improves memory, boosts blood flow to brain
Scientists have collected plenty of evidence linking exercise to brain health, with some research suggesting fitness may even improve memory.

3D VR blood flow to improve cardiovascular care
Biomedical engineers are developing a massive fluid dynamics simulator that can model blood flow through the full human arterial system at subcellular resolution.

MRI shows blood flow differs in men and women
Healthy men and women have different blood flow characteristics in their hearts, according to a new study.

Brain blood flow sensor discovery could aid treatments for high blood pressure & dementia
A study led by researchers at UCL has discovered the mechanism that allows the brain to monitor its own blood supply, a finding in rats which may help to find new treatments for human conditions including hypertension (high blood pressure) and dementia.

Blood flow monitor could save lives
A tiny fibre-optic sensor has the potential to save lives in open heart surgery, and even during surgery on pre-term babies.

Changes in blood flow tell heart cells to regenerate
Altered blood flow resulting from heart injury switches on a communication cascade that reprograms heart cells and leads to heart regeneration in zebrafish.

Blood flow command center discovered in the brain
An international team of researchers has discovered a group of cells in the brain that may function as a 'master-controller' for the cardiovascular system, orchestrating the control of blood flow to different parts of the body.

Read More: Blood Flow News and Blood Flow Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.