Nav: Home

Efficiency of non-invasive brain stimulation for memory improvement: Embracing the challenge

March 24, 2020

A group of scientists from the Research Center of Neurology and Skoltech showed that human working memory can be tweaked using non-invasive magnetic stimulation of the brain. Also, they discovered that the effect of magnetic stimulation weakens as the brain works on a cognitive task under stimulation.

Working memory (WM) stores and processes the information we need for daily use. The WM mechanisms get activated when, for example, we memorize a phone number until we find a scrap of paper or a smartphone to write it down. WM disorders are a frequent occurrence in many nervous system diseases, whereas in healthy people, the WM capacity is associated with an individual's learning ability and general intelligence level.

The transcranial magnetic stimulation (TMS) is regarded as one of the promising non-pharmacological WM enhancement methods leveraging the effect of the alternating magnetic field which painlessly penetrates through the scalp and skull bones, with an electric field forming in the cortex. As TMS can influence the mechanisms of neuroplasticity, it is used as a therapeutic method for various nervous system diseases. The TMS effects are known to depend both on the stimulation parameters and the brain activity during stimulation. Combining TMS with concurrent cognitive activity has evolved into a cognitive enhancement technique for patients with Alzheimer's disease. However, data are still lacking on how exactly the brain activity influences the TMS efficiency.

The researchers compared the effects of TMS on WM when stimulation was applied with and without a cognitive load. The WM performance was evaluated before and after a 20-minute stimulation session. The stimulation area was selected based on the individual brain activation pattern which formed during a WM-engaging task. The results suggest that WM does not respond to any stimulation other than TMS with no cognitive load.

"The results of our research lead us to conclude that cognitive activity can reduce rather than increase the TMS efficiency. This should be borne in mind when developing new stimulation protocols for cognitive enhancement in both healthy volunteers and patients suffering from various nervous system diseases," says Natalya Suponeva, Head of Department of Neurorehabilitation and Physiotherapy at the Research Center of Neurology and Associate Member of RAS.

Maxim Fedorov, Director of the Skoltech Center for Computational and Data-Intensive Science and Engineering (CDISE), is inspired by the research outcomes and the ensuing opportunities: "The results attest to the efficiency of interdisciplinary research in biomedicine and cognitive sciences, benefiting from advanced data processing methods. We at CDISE have much interest in collaborating with the Research Center of Neurology and studying WM mechanisms for a number of reasons. First, this would be an exciting experience and a good opportunity to apply some of the findings in practice in the short term (better memory is what many of us need). Second, modern biomedical research tools open up broad horizons for data and AI scientists. Data are abundant but sometimes too noisy and the data samples are often heterogeneous. Generally speaking, we are faced with non-trivial tasks that prompt ideas for new research targets in our field. Third, many ideas in Big Data and AI, such as neural networks, were born out of research into the human higher nervous activity. And this is very interesting. Currently, we are busy working on many projects at the crossroads of neuroscience, simulation and Big Data. Personally, I believe that man is as boundless as the Universe, and we are just beginning to understand how interesting we are and how much potential we have. I am convinced that we have a lot of unexpected discoveries ahead of us. We strongly hope that our collaboration with the Research Center of Neurology will be a continued success."

Currently, the study is moving forward with a larger number of healthy volunteers in order to validate the recent findings and evaluate the long-term effect of TMS on WM performance.

Skolkovo Institute of Science and Technology (Skoltech)

Related Memory Articles:

Memory of the Venus flytrap
In a study to be published in Nature Plants, a graduate student Mr.
Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.
Previously claimed memory boosting font 'Sans Forgetica' does not actually boost memory
It was previously claimed that the font Sans Forgetica could enhance people's memory for information, however researchers from the University of Warwick and the University of Waikato, New Zealand, have found after carrying out numerous experiments that the font does not enhance memory.
Memory boost with just one look
HRL Laboratories, LLC, researchers have published results showing that targeted transcranial electrical stimulation during slow-wave sleep can improve metamemories of specific episodes by 20% after only one viewing of the episode, compared to controls.
VR is not suited to visual memory?!
Toyohashi university of technology researcher and a research team at Tokyo Denki University have found that virtual reality (VR) may interfere with visual memory.
The genetic signature of memory
Despite their importance in memory, the human cortex and subcortex display a distinct collection of 'gene signatures.' The work recently published in eNeuro increases our understanding of how the brain creates memories and identifies potential genes for further investigation.
How long does memory last? For shape memory alloys, the longer the better
Scientists captured live action details of the phase transitions of shape memory alloys, giving them a better idea how to improve their properties for applications.
A NEAT discovery about memory
UAB researchers say over expression of NEAT1, an noncoding RNA, appears to diminish the ability of older brains to form memories.
Molecular memory can be used to increase the memory capacity of hard disks
Researchers at the University of Jyväskylä have taken part in an international British-Finnish-Chinese collaboration where the first molecule capable of remembering the direction of a magnetic above liquid nitrogen temperatures has been prepared and characterized.
Memory transferred between snails
Memories can be transferred between organisms by extracting ribonucleic acid (RNA) from a trained animal and injecting it into an untrained animal, as demonstrated in a study of sea snails published in eNeuro.
More Memory News and Memory Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at