Creating stretchable thermoelectric generators

March 24, 2020

For the first time, a soft and stretchable organic thermoelectric module has been created that can harvest energy from body heat. The breakthrough was enabled by a new composite material that may have widespread use in smart clothing, wearable electronics and electronic skin.

Researchers at the Laboratory of Organic Electronics at Linköping University have developed an organic composite material with unique properties - not only is it soft and stretchable, it also has a high electrical conductivity and good thermoelectric properties. This makes it ideal for many wearable applications.

The researchers have published the result in Nature Communications, together with colleagues from Belgium, New Zealand and California.

Nara Kim, postdoc and principal research engineer in the Laboratory of Organic Electronics, has combined three materials: the conducting polymer PEDOT:PSS, a water-soluble polyurethane rubber, and an ionic liquid. The result is a composite with unique properties. The PEDOT:PSS gives it thermoelectric properties, the rubber provides elasticity, and the ionic liquid ensures softness.

Nara Kim has carried out the research under the leadership of Professor Xavier Crispin and Senior Lecturer Klas Tybrandt, both at the Laboratory of Organic Electronics.

"Xavier Crispin is a pioneer in organic thermoelectric materials; Klas Tybrandt is an expert in soft electronic materials; and I contribute my knowledge of organic composites. We came up with the idea for the new material together", she says.

PEDOT:PSS is the most common conducting polymer and is used in many applications, not least due to its good thermoelectric properties. But thick polymer film is too hard and brittle to be successfully integrated into wearable electronics.

"Our material is 100 times softer and 100 times more stretchable than PEDOT:PSS", says Klas Tybrandt, who leads the group of Soft Electronics at the Laboratory of Organic Electronics.

"The ability to control the structure of the material both at the nanoscale and the microscale allows us to combine the excellent properties of the different materials in a composite", he says.

The new composite is also printable.

"The composite was formulated by water-based solution blending and it can be printed onto various surfaces. When the surface flexes or folds, the composite follows the motion. And the process to manufacture the composite is cheap and environmentally friendly", says Nara Kim.

The researchers see a huge range of new possibilities using the material to create soft and elastic organic conducting materials.

"There are many ionic liquids, conducting polymers and traditional elastomers that can be combined to give new nanocomposites for many applications, such as thermoelectric generators, supercapacitors, batteries, sensors, and in wearable and implantable applications that require thick, elastic and electrically conducting materials", says Xavier Crispin.
Principal financers of the research have been the Knut and Alice Wallenberg Foundation, the Göran Gustafsson Foundation and the Swedish Foundation for Strategic Research, together with the strategic research area in advanced functional materials, AFM, at Linköping University.

Elastic Conducting Polymer Composites in Thermoelectric Modules, Nara Kim, Samuel Lienemann, Ioannis Petsagkourakis, Desalegn Alemu Mengistie, Seyoung Kee, Thomas Ederth, Viktor Gueskine, Philippe Leclère, Roberto Lazzaroni, Xavier Crispin, and Klas Tybrandt, Nature Communications 2020, doi 10.1038/s41467-020-15135-w

A short video:

Contact: Klas Tybrandt, +46 11 36 32 87

Linköping University

Related Ionic Liquid Articles from Brightsurf:

Liquid metals come to the rescue of semiconductors
Two-dimensional semiconductors offer a possible solution to the limited potential for further shrinking of traditional silicon-based electronics: the long-predicted end of 'Moore's Law'.

Liquid sulfur changes shape and goes critic under pressure
Scientists from the ESRF, together with teams from CEA and CNRS/Sorbonne Université, have found the proof for a liquid-to-liquid transition in sulfur and of a new kind of critical point ending this transition.

Ultrafast lasers probe elusive chemistry at the liquid-liquid interface
Real-time measurements captured by researchers at the Department of Energy's Oak Ridge National Laboratory provide missing insight into chemical separations to recover cobalt, a critical raw material used to make batteries and magnets for modern technologies.

Liquid water is more than just H2O molecules
Skoltech scientists in collaboration with researchers from the University of Stuttgart showed that the concentration of short-lived ions (H3O+ and OH-) in pure liquid water is much higher than that assumed to evaluate the pH, hence significantly changing our understanding of the dynamical structure of water.

Scientists discover just how runny a liquid can be
Scientists from Queen Mary University of London and the Russian Academy of Sciences have found a limit to how runny a liquid can be.

New route of assembly and ionic channel traffic in cardiac cells
Ionic channels -integral proteins in the cell membrane- are essential in several processes such as cardiac activity, nervous transmission, cell proliferation and the regulation of blood pressure.

Ordering of atoms in liquid gallium under pressure
Liquid metals and alloys have exceptional properties that make them suitable for electrical energy storage and generation applications.

Mechanism of controlling autophagy by liquid-liquid phase separation revealed
Japanese scientists elucidated characteristics of PAS through observing the Atg protein using a fluorescence microscope and successfully reconstituted PAS in vitro.

But what about flow? The effect of hydrodynamics on liquid-liquid transitions
The University of Tokyo Institute of Industrial Science researchers modeled the role of hydrodynamics in liquid-liquid transitions of a single-component system.

Can ionic liquids transform chemistry?
Table salt is a commonplace ingredient in the kitchen, but a different kind of salt is at the forefront of chemistry innovation.

Read More: Ionic Liquid News and Ionic Liquid Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to