Nav: Home

Recipe for neuromorphic processing systems?

March 24, 2020

WASHINGTON, March 24, 2020 -- During the 1990s, Carver Mead and colleagues combined basic research in neuroscience with elegant analog circuit design in electronic engineering. This pioneering work on neuromorphic electronic circuits inspired researchers in Germany and Switzerland to explore the possibility of reproducing the physics of real neural circuits by using the physics of silicon.

The field of "brain-mimicking" neuromorphic electronics shows great potential not only for basic research but also for commercial exploitation of always-on edge computing and "internet of things" applications.

In Applied Physics Letters, from AIP Publishing, Elisabetta Chicca, from Bielefeld University, and Giacomo Indiveri, from the University of Zurich and ETH Zurich, present their work to understand how neural processing systems in biology carry out computation, as well as a recipe to reproduce these computing principles in mixed signal analog/digital electronics and novel materials.

One of the most distinctive computational features of neural networks is learning, so Chicca and Indiveri are particularly interested in reproducing the adaptive and plastic properties of real synapses. They used both standard complementary metal-oxide semiconductor (CMOS) electronic circuits and advanced nanoscale memory technologies, such as memristive devices¬, to build intelligent systems that can learn.

This work is significant, because it can lead to a better understanding of how to implement sophisticated signal processing using extremely low-power and compact devices.

Their key findings are that the apparent disadvantages of these low-power computing technologies, mainly related to low precision, high sensitivity to noise and high variability, can actually be exploited to perform robust and efficient computation, very much like the brain can use highly variable and noisy neurons to implement robust behavior.

The researchers said it is surprising to see the field of memory technologies, typically concerned with bit-precise high-density device technologies, now looking at animal brains as a source of inspiration for understanding how to build adaptive and robust neural processing systems. It is very much in line with the basic research agenda that Mead and colleagues were following more than 30 years ago.

"The electronic neural processing systems that we build are not intended to compete with the powerful and accurate artificial intelligence systems that run on power-hungry large computer clusters for natural language processing or high-resolution image recognition and classification," said Chicca.

In contrast, their systems "offer promising solutions for those applications that require compact and very low-power (submilliwatt) real-time processing with short latencies," Indiveri said.

He said examples of such applications fall within "the 'extreme-edge computing' domain, which require a small amount of artificial intelligence to extract information from live or streaming sensory signals, such as for bio-signal processing in wearable devices, brain-machine interfaces and always-on environmental monitoring."
The article, "A recipe for creating ideal hybrid memristive-CMOS neuromorphic computing systems," is authored by Elisabetta Chicca and Giacomo Indiveri. It will appear in Applied Physics Letters, March 24, 2020 (DOI: 10.1063/1.5142089). After that date, it can be accessed at


Applied Physics Letters features rapid reports on significant discoveries in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See

American Institute of Physics

Related Artificial Intelligence Articles:

Applying artificial intelligence to science education
A new review published in the Journal of Research in Science Teaching highlights the potential of machine learning--a subset of artificial intelligence--in science education.
New roles for clinicians in the age of artificial intelligence
New Roles for Clinicians in the Age of Artificial Intelligence Announcing a new article publication for BIO Integration journal.
Artificial intelligence aids gene activation discovery
Scientists have long known that human genes are activated through instructions delivered by the precise order of our DNA.
Artificial intelligence recognizes deteriorating photoreceptors
A software based on artificial intelligence (AI), which was developed by researchers at the Eye Clinic of the University Hospital Bonn, Stanford University and University of Utah, enables the precise assessment of the progression of geographic atrophy (GA), a disease of the light sensitive retina caused by age-related macular degeneration (AMD).
Classifying galaxies with artificial intelligence
Astronomers have applied artificial intelligence (AI) to ultra-wide field-of-view images of the distant Universe captured by the Subaru Telescope, and have achieved a very high accuracy for finding and classifying spiral galaxies in those images.
Using artificial intelligence to smell the roses
A pair of researchers at the University of California, Riverside, has used machine learning to understand what a chemical smells like -- a research breakthrough with potential applications in the food flavor and fragrance industries.
Artificial intelligence could revolutionize sea ice warnings
Today, large resources are used to provide vessels in the polar seas with warnings about the spread of sea ice.
A hidden history of artificial intelligence in primary care
Artificial intelligence methods are being utilized in radiology, cardiology and other medical specialty fields to quickly and accurately process large quantities of health data to improve the diagnostic and treatment power of health care teams.
Identifying light sources using artificial intelligence
Identifying sources of light plays an important role in the development of many photonic technologies, such as lidar, remote sensing, and microscopy.
Artificial intelligence could serve as backup to radiologists' eyes
Deploying artificial intelligence could help radiologists to more accurately classify lung diseases.
More Artificial Intelligence News and Artificial Intelligence Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at