Nav: Home

Planning for future water security in China

March 24, 2020

China's fast economic growth and accompanying rise in food demand is driving an increase in water use for agriculture and industry, thus threatening the country's water security. The findings of a new study underscore the value and potential of technological adoptions to help design targets and incentives for water scarcity mitigation measures.

Over the last century, people's water use has been increasing at more than twice the rate of the global population itself, with around 77% of this growth taking place in developing countries. According to the authors of the study published in the Proceedings of the National Academy of Sciences (PNAS), a lack of spatially detailed datasets however limits our understanding of historical water use trends and its key drivers, which makes future projections unreliable. As there are currently very few observation-based studies aimed at understanding the dynamics of historical water use, the authors endeavored to provide a detailed picture of how water use has been evolving amid socioeconomic, technological, and policy impacts, specifically in China. They provide evidence of the deceleration of human water use in the country and also attempted to identify the importance of water-conserving technological adoptions.

"The key question we wanted to address was how human water use responds to socioeconomic development, climate change, and policy interventions over time and space. We looked at China, not only because the country has transitioned from an underdeveloped country to the second largest economy in the world, but also because it is home to some of the Earth's most water-stressed regions. Diverse water conservancy measures were developed since the 1980s to avoid a long term water crisis, but it is not well known how water use is influenced by economic growth, structural transitions, and policy interventions," explains study lead author Feng Zhou, an Associate Professor at Peking University in China.

The researchers found that although China's water use doubled between 1965 and 2013, there was a widespread slowdown in the growth rates from 10.66 km3 per year before 1975, to 6.23 km3 per year in 1975 to 1992, and further down to 3.59 km3 per year in the following years. These decelerations were attributed to reduced water-use in irrigation and industry, which partly offset the increase driven by pronounced socioeconomic growth. The adoption of highly efficient irrigation techniques such as drip or sprinkler irrigation systems and industrial water recycling technologies explained most of the observed reduction of water-use intensities across China. Without these technologies, China's freshwater withdrawals would have been 80% more than the actual water use over the last two decades.

While water-conserving technological adoptions can deliver benefits of decoupling water use from socioeconomic development, studies in other countries have revealed an opposite relationship where technological adoption has led to an increase in intensive farming and thereby an increase in water use. According to the study, the first reason for these inconsistent results could be that intensive farming, such as high planting density and more sequential cropping had already been well developed in many Chinese prefectures. The second reason may lie in the nature of land institution in China where additional intensification requiring a change in irrigation infrastructure has been difficult to adopt due to the high fixed costs of the small fields allocated to farmers.

The authors explain that in China, the technological adoptions were accompanied by policy interventions including about 40 laws, regulations, programs, and action plans. In addition, the growth of China's water use is very likely to continue to slow down, as the latest policy interventions provide a more stringent constraint to approach a peak of water withdrawal. However, uncertainties and potential future water scarcity will come from three aspects:

First, China's land institution is undergoing a rapid transition towards large-scale farming through the farmland transfer system issued in 2014 alongside the adoption of water-conserving irrigation planned to cover 75% of the irrigated area in 2030. These ongoing transitions may lead farmers to expand irrigated areas or shift to water-intensive crops, which could offset the savings due to future improvement of irrigation efficiency.

The results further indicate that the westward development of the industrial sector has worsened water scarcity in many arid and semi-arid regions. High industrial water recycling has already been adopted in almost all these regions (>88%) except in Xinjiang, so that the potential for further water conservation would be limited. Without a stronger enforcement of capping water withdrawal, the industrial sector may become the most important driver continuing to increase water use.

Lastly, China is urbanizing at an unprecedented rate and the increasing per-capita income, coupled with generalized tap water accessibility, will likely stimulate more water-intensive lifestyles and thereby increase domestic water use.

The deceleration of water use revealed in this study partly challenges the results from global hydrological models, which commonly suggest an increase of total water use across China over the period 1971 to 2010. Zhou points out that one reason for this bias may be that technological change factors were prescribed as constant over space and time without consideration of policy interventions and actual technological adoption. It might however also be that socioeconomic activities data on China were simply disaggregated from national-scale statistics. The authors recommend that to improve model drivers, survey-based reconstruction datasets of water use ? like those presented in this study ? are valuable, and should be extended to other regions. In addition, the linkages between changes in water use and technological adoptions identified may be also be useful in the design of more realistic future water withdrawal scenarios, with the ultimate goal to improve global models used to assess water use targets and water scarcity mitigation.

"Modeling water use is very complex and we need much more regional data and coordination to improve our understanding of people and how they use water. The modeling community should work together to achieve this as it is crucial to identify the key drivers and mechanisms behind changing water use patterns across the world that help make future projections more reliable. Future policies to underpin water targets in for example, the UN Sustainable Development Goals framework, will be key to addressing the challenge of decoupling water use from socioeconomic development in China and other water-stressed countries," concludes study coauthor and IIASA Acting Water Program Director, Yoshihide Wada.

Zhou F, Bo Y, Ciais P, Dumas P, Tang Q, Wang X, Liu J, Zheng C, Polcher J, Yin Z, Guimberteau M, Peng S, Ottle C, Zhao X, Zhao J, Tan Q, Chen L, Shen H, Yang H, Piao S, Wang H, Wada Y (2020). Deceleration of China's human water use and its key drivers. Proceedings of the National Academy of Sciences (PNAS) DOI: 10.1073/pnas.1909902117


Researcher contact
Yoshihide Wada
Acting Program Director
IIASA Water Program
Tel: +43 2236 807 241

Press Officer
Ansa Heyl
IIASA Press Office
Tel: +43 2236 807 574
Mob: +43 676 83 807 574

About IIASA:

The International Institute for Applied Systems Analysis (IIASA) is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policymakers to shape the future of our changing world. IIASA is independent and funded by prestigious research funding agencies in Africa, the Americas, Asia, and Europe.

International Institute for Applied Systems Analysis

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at