Engineers model mutations causing drug resistance

March 24, 2020

Whether it is a drug-resistant strain of bacteria, or cancer cells that no longer react to the drugs intended to kill them, diverse mutations make cells resistant to chemicals, and "second generation" approaches are needed. Now, a team of Penn State engineers may have a way to predict which mutations will occur in people, creating an easier path to create effective pharmaceuticals.

"Structure-based drug design works very well," said Justin Pritchard, assistant professor of biomedical engineering and holder of the Dorothy Foehr Huck and J. Lloyd Huck Early Career Entrepreneurial Professorship. "It is an amazing ecosystem of technology, but you still have to point it at a set of resistance mutations."

Standard practice to develop drugs is to model the structure of chemicals and their cellular targets to kill specific pathogens or cancer cells. Once mutations begin to change the cells, treatment requires new drugs. However, a variety of mutations may occur and drug developers need to target the appropriate mutation to kill the pathogen or the cancer cells.

The researchers wanted to discover what drives which mutations to grow out in the real world so that they could choose the most effective mutations to target. They report today (Mar. 24) in Cell Reports that they found that the most drug-resistant mutation was not necessarily the mutation that dominated. "Survival of the fittest" did not always hold and targeting should aim at the most probable mutation rather than the most resistant, at least for some cancers.

"We need to not just understand the biophysics," said Pritchard. "We also need to understand the evolutionary dynamics."

Drug resistance is a problem when treating diseases caused by bacteria, viruses and cancers, but the researchers chose to investigate mutations in cancers because understanding mutations in cancer cells is simpler. Mutations in bacteria and virus have two components -- what happens within the cells and what happens when the bacteria or viruses spread from host to host. Because cancer is not, in humans, contagious, working with cancer cells removes a portion of the potential source of mutations.

"If we take out the community aspect of transmission, we can study just the de novo, or 'from nothing,' generation of mutations," said Pritchard.

The researchers looked at existing data for leukemia and three other types of cancer. The leukemia database was the largest and most complete. They used algorithms similar to those used in modeling how chemical reactions in chemical physics take place. In this case, they used the simulations to model how evolution works.

"We are trying to create a generalized approach to getting the numbers that we use in the models," said Pritchard. "To do this we did not 'fit' the model, but used data obtained from experiments and scaling."

Creating a way to obtain data for generalized cases rather than individuals would increase the possibility of using this method for a variety of pathogens.

"We ran the model and it matched clinical data to a degree much better than I ever expected," said Pritchard. "We did this from first principles (basic assumptions)."

As cancer cells divide, errors that are made in the copying of DNA result in mutations. One letter of DNA might be mistakenly replaced with another, but these mistakes are not completely random. Some letters are more easily substituted for others, and so these mutations happen more often. This creates a mutation bias -- some substitutions are more likely. Thus the likeliness of a mistake, and not the reduction in sensitivity to drugs, can predict the resistance mutations that real patients develop.

"We shouldn't always focus on the strongest resistance mutation because there are other evolutionary forces that dictate what happens in the real world," said Pritchard. "Sometimes drug resistance relies on biased random events."

The researchers found that biased random mutations played a big part in the evolution of resistance in leukemia. They found similar results with breast, prostate and stomach cancers, although the effect size was not as large.

"The data are not quite as strong in the prostate and breast cancer setting," said Pritchard. "In non-small cell lung cancer we didn't see this effect at all."

According to the researchers, there are lots of places where evolutionary bias creates an abundance of mutations that are not the most resistant strains, but it is a spectrum with leukemias on one end; breast, prostate and stomach cancers in the middle; and non-small cell lung cancer on the other end.

"Our analysis establishes a principle for rational drug design: When evolution favors the most probable mutant, so should drug design," the researchers said.
Also leading on this project were Scott M. Leighow, doctoral student and Chuan Liu, a visiting scientist now returned to medical practice in Shanghai; and co-authors Haider Inam, doctoral student, and Boyang Zhao, visiting professional data scientist; all at Penn State.

The National Institute of Biomedical Imaging and Bioengineering supported this research.

Penn State

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to