Nav: Home

Small horses got smaller, big tapirs got bigger 47 million years ago

March 24, 2020

The former coalfield of Geiseltal in Saxony-Anhalt has yielded large numbers of exceptionally preserved fossil animals, giving palaeontologists a unique window into the evolution of mammals 47 million years ago. A team led by the University of Tübingen and the Martin Luther University Halle-Wittenberg (MLU) has shown that the body size of two species of mammals developed in opposite directions. The study was published in "Scientific Reports".

47 million years ago - the middle Eocene - the Earth was much warmer and the area of Geiseltal was a swampy subtropical forest whose inhabitants included ancestors of the horse, ancient tapirs, large terrestrial crocodiles, as well as giant tortoises, lizards and ground-dwelling birds. So rich are the Geiseltal finds that they give researchers an unprecedented high-resolution picture of evolutionary dynamics at the population level.

A team led by Dr Márton Rabi from the University of Tübingen and the Martin Luther University Halle-Wittenberg (MLU) has shown that the body size of two species of mammals developed in opposite directions. The study, published in Scientific Reports, was carried out with Simon Ring and Professor Hervé Bocherens at the Senckenberg Centre for Human Evolution and Palaeoenvironment and the University of Tübingen in cooperation with Dr Oliver Wings from the MLU.

"We were initially interested in the evolution of the ancient horses, which were about the size of a Labrador dog. These animals are particularly abundant in the Geiseltal fossil record," Rabi says. Researchers initially believed they had several species of early horse. "However, we found that here, there was only one species, whose body size shrank significantly with time," Rabi explains. The team wanted to test whether this body size shift was climate-induced, since past global warming caused body-size reduction in ancient mammals.

Carbon and oxygen isotope studies on fossil teeth provided the scientists with information about the local middle Eocene climate. "They indicate a humid tropical climate. However, we didn't find any evidence for climatic changes in Geiseltal over the period investigated," says Bocherens. To further test the data, the team sought to discover whether the dwarfing process was unique to the horses. For comparison, they examined the evolution of the tapir ancestor called Lophiodon. "We had reason to question the Geiseltal's constant-climate data; so we expected that other mammals would show the same body-size trends as the horses," Simon Ring explains. In a surprising result, the tapirs - also a single species - revealed the opposite trend. They grew larger instead of shrinking. While the ancestors of the horse shrank from an average body weight of 39 kilograms to around 26 kilograms over about a million years, the tapirs increased from 124 kilograms to an average body weight of 223 kilograms.

Differing survival strategies

"All the data indicate that the body size of the horses and tapirs developed differently not because of the climate, but because of different life cycles," explains Bocherens. Small animals reproduce faster and die younger: Relative to their size, they don't have to eat as much to maintain their body mass and can devote more resources to having young. Larger animals live longer and have lower reproduction rates. They have to eat more and therefore have fewer resources for reproduction - but, being large, face fewer predators and can range further to get better food. That extends their lives and gives them more time to breed. The Geiseltal tapirs and the horses therefore likely maximized the different advantages of their respective life cycle strategies, which caused divergent body size evolution.

Exceptional fossil deposits

The Geiseltal fossil site is located in the eastern state of Saxony-Anhalt. In the course of open-cast brown coal mining between 1933 and 1993, tens of thousands of fossil specimens of more than one hundred species were discovered there. Many were the ancestors of modern vertebrates. "The Geiseltal is as important a fossil site as the Messel Pit near Darmstadt, which is a UNESCO World Heritage Site," says Dr. Rabi. "But because the Geiseltal collection was hardly accessible during East German times, it kind of went off the radar."
-end-


Martin-Luther-Universität Halle-Wittenberg

Related Evolution Articles:

Artificial evolution of an industry
A research team has taken a deep dive into the newly emerging domain of 'forward-looking' business strategies that show firms have far more ability to actively influence the future of their markets than once thought.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.