Nav: Home

Manipulating ligands

March 24, 2020

Noble metal aerogels (NMAs) are an emerging class of porous materials embracing nano-sized highly-active noble metals and porous structures, displaying unprecedented performance in diverse electrocatalytic processes. However, various impurities, particularly organic ligands, are often involved in the synthesis and remain in the corresponding products, hindering the investigation of the intrinsic electrocatalytic properties of NMAs. On the other hand, the presence of organic ligands is generally regarded detrimental to the catalytic process because they can block the active sites. However, the authenticity of this fact has not yet been verified in NMA systems because of the lack of way to impart ligands in clean NMAs via a controlled manner.

Ran Du from China is a Alexander von Humboldt research fellow working as postdoc in the physical chemistry group of Professor Alexander Eychmüller at TU Dresden since 2017. In collaboration with Prof. Stephan Barcikowski from the University of Duisburg-Essen, they recently created surface-clean noble metal aerogels by using laser-produced nanoparticles and thus, revealing a new dimension for enhancing electrocatalysis performance for electro-oxidation of ethanol (the anode reaction for direct ethanol fuel cells) by modulating ligand chemistry.

Ran Du and his team prepared various inorganic-salt-stabilized metal nanoparticles by laser ablation, which serve as organic-ligand-free precursors. In this way, they fabricated various impurity-free NMAs (gold (Au), palladium (Pd), and gold-palladium (Au-Pd) aerogels. In this light, the intrinsic electrocatalytic properties of NMAs were unveiled. In addition, these clean gels were used as a platform to deliberately graft specific ligands, by which the ligand-directed modulation of electrocatalytic properties was unambiguously demonstrated. The underlying mechanisms were found to be attributed to electron density modulations posed by different ligands, where the electrocatalytic activity of ethanol oxidation reaction (EOR) has been positively correlated with the oxidation state of the metals. In this regard, the polyvinylpyrrolidone (PVP)-modified Au-Pd bimetallic aerogel delivered a prominent current density of 5.3 times higher than commercial Pd/C (palladium/carbon) and 1.7 times higher than Au-Pd pristine aerogels.

"With this work, we not only provide a strategy to fabricate impurity-free NMAs for probing their intrinsic properties, but also offer a new dimension for devising high-performance electrocatalysts by revisiting the effects of the ligands", assumes Ran Du.
-end-
Original Publication:

Fan, X.; Zerebecki, S.; Du, R.*; Hübner, R.; Marzum, G.; Jiang, G.; Hu, Y.; Barcikowki, S.; Reichenberger, S.; Eychmüller, A.*, Promoting the Electrocatalytic Performance of Noble Metal Aerogels by Ligand-Directed Modulation. Angew. Chem. Int. Ed. 2020, DOI: 10.1002/anie.201913079.

Technische Universität Dresden

Related Ethanol Articles:

Spraying ethanol to nanofiber masks makes them reusable
A joint research team from POSTECH and Japan's Shinshu University evaluates the filtration efficiency of nanofiber and melt-blown filters when cleaned with ethanol.
Anaerobically disinfect soil to increase phosphorus using diluted ethanol
Anaerobic disinfection of soil is an effective method to kill unwanted bacteria, parasites and weeds without using chemical pesticides.
Fractionation processes can improve profitability of ethanol production
The US is the world's largest producer of bioethanol as renewable liquid fuel, with more than 200 commercial plants processing over 16 billion gallons per year.
Ethanol fuels large-scale expansion of Brazil's farming land
A University of Queensland-led study has revealed that future demand for ethanol biofuel could potentially expand sugarcane farming land in Brazil by 5 million hectares by 2030.
Measuring ethanol's deadly twin
ETH Zurich researchers have developed an inexpensive, handheld measuring device that can distinguish between methanol and potable alcohol.
Modified enzyme can increase second-generation ethanol production
Using a protein produced by a fungus that lives in the Amazon, Brazilian researchers developed a molecule capable of increasing glucose release from biomass for fermentation.
Scientists develop a chemocatalytic approach for one-pot reaction of cellulosic ethanol
Scientists at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have developed a chemocatalytic approach to convert cellulose into ethanol in a one-pot process by using a multifunctional Mo/Pt/WOx catalyst.
New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.
Yeast makes ethanol to prevent metabolic overload
Why do some yeast cells produce ethanol? Scientists have wondered about this apparent waste of resources for decades.
Corncob ethanol may help cut China's greenhouse gas emissions
A new Biofuels, Bioproducts and Biorefining study has found that using ethanol from corncobs for energy production may help reduce greenhouse gas emissions in China, if used instead of starch-based ethanol.
More Ethanol News and Ethanol Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.