Nav: Home

Research breakthrough: Humans are not the first to repurpose CRISPR

March 24, 2020

In recent years, the development of CRISPR technologies and gene-editing scissors in particular have taken the world by storm. Indeed, scientists have learned how to harness these clever natural systems in the biotech and pharmaceutical industries, among other areas.

New research from the University of Copenhagen shows that we are not the first to find a way to exploit the benefits of the CRISPR technique. Apparently, primitive bacterial parasites have been doing so for millions of years.

The researchers studied the least described and most enigmatic of the six CRISPR-Cas systems found in nature -- Type IV CRISPR-Cas. Here, they uncovered characteristics that differ entirely from those in other systems.

Redefining CRISPR

"Until recently, CRISPR-Cas was believed to be a defense system used by bacteria to protect themselves against invading parasites such as viruses, much like our very own immune system protects us. However, it appears that CRISPR is a tool that can be used for different purposes by diverse biological entities," according to 28-year-old Rafael Pinilla-Redondo, a PhD at UCPH's Department of Biology who led the research.

One of these biological entities are plasmids - small DNA molecules that often behave like parasites and, like viruses, require a host bacterium to survive.

"Here we found evidence that certain plasmids use type IV CRISPR-Cas systems to fight other plasmids competing over the same bacterial host. This is remarkable because, in doing so, plasmids have managed to turn the system around. Instead of protecting bacteria from their parasites, CRISPR is exploited to perform another task," says Pinilla-Redondo, adding:

"This is similar to how some birds compete for the best nesting site in a tree, or how hermit crabs fight for ownership of a shell."

"A humbling realization"

The discovery challenges the notion that CRISPR-Cas systems have only one purpose in nature, that is, acting as immune systems in bacteria. According to Rafael Pinilla-Redondo, the discovery gives some additional perspective:

"We humans have only recently begun to exploit nature's CRISPR-Cas systems, but as it turns out, we are not the first. These 'primitive parasites' have been using them for millions of years, long before humans. It is quite a humbling realization"

What can we use it for?

The researchers speculate that these systems could be used to combat one of the greatest threats to humanity: multi-drug resistant bacteria. Hundreds of thousands of people die from MDR bacteria every year.

Bacteria become resistant to antibiotics by acquiring genes that make them resistant to antibiotic treatment. Very frequently, this occurs when plasmids transport antibiotic resistant genes from one bacterium to another.

"As this system appears to have evolved to specifically attack plasmids, it is plausible that we could repurpose it to fight plasmids carrying antibiotic resistant genes. This could be achieved because it is possible to program CRISPR to target what one wants" says Pinilla-Redondo.
-end-
FACTS:
  • In nature, CRISPR-Cas are adaptive immune systems used by bacteria to cut the DNA of invading genetic parasites.
  • There are six types of naturally occurring CRISPR-Cas systems. The new research shows that Type IV CRISPR-Cas -- unlike the other known CRISPR-Cas types -- is not found in the genome of bacteria, but in the genetic material of plasmids. Plasmids are parasitic genetic elements that require a host bacterium to survive.
  • Among other things, the researchers identified several new subtypes and variants of the Type IV CRISPR-Cas system.
  • Several recent articles from other researchers also suggest that different types of so-called mobile genetic elements (a group of genetic entities to which plasmids belong) use CRISPR-Cas components to perform tasks other than protecting bacteria from viruses.
  • The research article is published in the scientific journal Nucleic Acids Research.
  • The study was conducted by: Rafael Pinilla-Redondo, David Mayo-Muñoz, Jacob Russel, Roger A. Garrett and Søren J. Sørensen from the Department of Biology at the University of Copenhagen; Lennart Randau from Philipps-Universität Marburg, Germany, and Shiraz A. Shah from the Danish Children's Asthma Center at Herlev and Gentofte Hospital, University of Copenhagen. The research is supported by Independent Research Fund Denmark; Novo Nordisk Foundation's Tandem programme; Lundbeck Foundation; Deutsche Forschungsgemeinschaft; the Capital Region of Denmark and the Novo Nordisk Foundation's "Basic Bioscience programme".


University of Copenhagen

Related Bacteria Articles:

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.