Nav: Home

Study indicates vaporized cannabis creates drug-seeking behavior

March 24, 2020

Rats with regular access to cannabis seek more of the substance and tend to show increased drug-seeking behavior when cannabis is absent.

That's according to a new study conducted by neuroscientists in Washington State University's Integrative Physiology and Neuroscience unit.

The research, published in the Journal of Neuroscience, is the next step to better understand the cognitive and neural effects of cannabis use in humans.

"It's always difficult to establish reliable cannabis-seeking behavior using animal models. In this study we have a clear and reliable response for cannabis by utilizing the very first self-administration model involving on-demand delivery of whole-plant cannabis vapor," said Ryan McLaughlin, professor in WSU's Integrative Physiology and Neuroscience unit.

So, how do you give a rat the option to self-administer cannabis?

Well, their curious nose, of course.

WSU researchers trained male Sprague Dawley rats to poke their nose into a small port within a Plexiglas chamber with constant air flow to automatically deliver discrete "puffs" of whole-plant cannabis vapor.

The chambers are equipped with a spigot that delivers vapor, a cue light that illuminates during vapor delivery, an exhaust system for vapor evacuation, and two small nose poke ports, one of which activates a three-second puff of cannabis vapor.

Animals were able to administer puffs of whole-plant, tetrahydrocannabinol-rich (THC) cannabis vapor during daily one-hour sessions over the course of 21 days. Another group of rats received cannabidiol-rich (CBD) cannabis vapor, and a control group received vapor not containing any cannabinoids.

"By the third day of the study, animals began to establish associations between their nose pokes and the cannabis vapor delivery," McLaughlin said.

Animals exposed to THC-rich cannabis vapor administered more vapor deliveries than the other two study groups from day four to day 21, sometimes doubling the number of deliveries to each group.

What was more shocking was when cannabis was taken away on day 22.

"They would show a burst in responding," McLaughlin said. "It went from 17 to 18 nose pokes up to 70 or 80 on average. They were trying to figure out why it wasn't working."

In addition, drug-paired cues also increased the animals' response rates.

For example, researchers found an increase in nose poke responses when the cue light was introduced following an extended absence of THC-rich vapor delivery.

"It was similar to when you have someone who has stopped smoking cannabis for a while but then sees their pipe or their vape pen, immediately that cue makes them want to seek that drug again," Tim Freels, post-doctoral researcher and first author on the paper, said.

The researchers found that food intake was higher, and activity was lower for the animals exposed to THC-rich vapor, yet they expended more energy and burned more calories than the other two groups.

"They experienced a lot of the same effects people would experience," Freels said. "And that is very important when you're trying to validate a model and then extend it to a human population."

Up until the use of this new self-administration model, it was difficult to compare previous cannabis research in animals with the human condition, as most animal-cannabis studies involved an injection of THC or synthetic cannabinoids rather than giving the animal the option to self-administer whole-plant cannabis vapor.

For the McLaughlin Lab, the next steps are to look at the long-term effects of cannabis vapor self-administration during sensitive developmental periods, such as pregnancy or adolescence.

"We urgently need more information on the effects of cannabis use on the developing brain, and this model will be important for identifying potential risks that can be relayed to human cannabis users," McLaughlin said.
-end-


Washington State University

Related Neuroscience Articles:

Researchers rebuild the bridge between neuroscience and artificial intelligence
In an article in the journal Scientific Reports, researchers reveal that they have successfully rebuilt the bridge between experimental neuroscience and advanced artificial intelligence learning algorithms.
The evolution of neuroscience as a research
When the first issue of the JDR was published, the field of neuroscience did not exist but over subsequent decades neuroscience has emerged as a scientific field that has particular relevance to dentistry.
Diabetes-Alzheimer's link explored at Neuroscience 2019
Surprising links exist between diabetes and Alzheimer's disease, and researchers are beginning to unpack the pathology that connects the two.
Organoid research revealed at Neuroscience 2019
Mini-brains, also called organoids, may offer breakthroughs in clinical research by allowing scientists to study human brain cells without a human subject.
The neuroscience of autism: New clues for how condition begins
UNC School of Medicine scientists found that a gene mutation linked to autism normally works to organize the scaffolding of brain cells called radial progenitors necessary for the orderly formation of the brain.
Harnessing reliability for neuroscience research
Neuroscientists are amassing the large-scale datasets needed to study individual differences and identify biomarkers.
Blue Brain solves a century-old neuroscience problem
In a front-cover paper published in Cerebral Cortex, EPFL's Blue Brain Project, a Swiss Brain Research Initiative, explains how the shapes of neurons can be classified using mathematical methods from the field of algebraic topology.
Characterizing pig hippocampus could improve translational neuroscience
Researchers have taken further steps toward developing a superior animal model of neurological conditions such as traumatic brain injury and epilepsy, according to a study of miniature pigs published in eNeuro.
The neuroscience of human vocal pitch
Among primates, humans are uniquely able to consciously control the pitch of their voices, making it possible to hit high notes in singing or stress a word in a sentence to convey meaning.
Study tackles neuroscience claims to have disproved 'free will'
For several decades, some researchers have argued that neuroscience studies prove human actions are driven by external stimuli -- that the brain is reactive and free will is an illusion.
More Neuroscience News and Neuroscience Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Sound And Silence
Sound surrounds us, from cacophony even to silence. But depending on how we hear, the world can be a different auditory experience for each of us. This hour, TED speakers explore the science of sound. Guests on the show include NPR All Things Considered host Mary Louise Kelly, neuroscientist Jim Hudspeth, writer Rebecca Knill, and sound designer Dallas Taylor.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

Kittens Kick The Giggly Blue Robot All Summer
With the recent passing of Ruth Bader Ginsburg, there's been a lot of debate about how much power the Supreme Court should really have. We think of the Supreme Court justices as all-powerful beings, issuing momentous rulings from on high. But they haven't always been so, you know, supreme. On this episode, we go all the way back to the case that, in a lot of ways, started it all.  Support Radiolab by becoming a member today at Radiolab.org/donate.