Nav: Home

Changes in surface sugarlike molecules help cancer metastasize

March 24, 2020

Changes in a specific type of sugarlike molecule, or glycan, on the surface of cancer cells help them to spread into other tissues, according to researchers at the University of California, Davis. Published March 23 in Proceedings of the National Academy of Sciences, the work could lead to diagnostic tests and new therapies to slow or stop the spread of cancers.

The research team led by Professor Carlito Lebrilla, UC Davis Department of Chemistry, worked with cells derived from a human cholangiocarcinoma, or bile duct cancer. Cholangiocarcinoma is relatively rare but becoming more common in the U.S. It metastasizes readily and is often incurable by the time of diagnosis.

Generally, researchers have studied how cancer cells spread by looking at the proteins on their surface membranes. Some of these proteins may serve as receptors that engage with other cells, allowing cancerous cells to attach and move into tissues.

But proteins on living cells are also coated with a wide variety of sugarlike carbohydrate molecules called glycans. These glycans modify how proteins -- and therefore the cells -- interact with their environment. While DNA dictates the protein's structure, glycans and carbohydrates are made and metabolized by the protein's own machinery. That makes studying these molecules even more challenging.

Lebrilla's laboratory at UC Davis has been studying glycans, glycoproteins and the roles they play in the body for many years, developing new techniques to analyze and characterize them.

How glycans modify proteins

Metastatic cholangiocarcinoma cells had high levels of the glycan mannose on surface proteins, Lebrilla's team discovered. These cancer cells lacked the gene for an enzyme that breaks down mannose. The presence of mannose was associated with cancer cells being able to spread out on a dish and migrate through pores in a membrane, simulating squeezing through the wall of a blood vessel into surrounding tissue.

"What is interesting here is that it's a new way to look at cancer metastasis. Instead of looking at proteins, we've looked at how protein modifications are affecting the metastatic behavior of cancer cells," Lebrilla said.

If modified glycans are a characteristic of metastatic cancers, that could present a new way to diagnose cancer and perhaps predict which cancers are likely to become invasive. The glycans and the metabolic pathways that make them could also be targets for new drugs.
-end-
Co-authors on the paper are: Diane Dayoung Park, Gege Xu and Qiongyu Li, UC Davis Department of Chemistry; Chatchai Phoomak, Worachart Lert-Itthiporn and Sopit Wongkham, Khon Kaen University, Thailand; Laura Olney, Khiem Tran, Nathan Haigh, Michiko Shimoda and Emanual Maverakis, Department of Dermatology, UC Davis School of Medicine; Simon Park, Beth Israel Deaconess Medical Center, Harvard Medical School; Beth Guillaume Luxardi and Nobuyuki Matoba, University of Louisville School of Medicine; and Fernando Fierro, Department of Cell Biology and Human Anatomy, UC Davis School of Medicine. The work was partly supported by grants from the NIH and NSF.

Lebrilla is a co-founder and member of the Scientific Advisory Board for Intervenn, a startup company developing a serum-based test for cancer.

University of California - Davis

Related Cancer Cells Articles:

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.
Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.
Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.
Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.
Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.
New liver cancer research targets non-cancer cells to blunt tumor growth
'Senotherapy,' a treatment that uses small molecule drugs to target ''senescent'' cells, or those cells that no longer undergo cell division, blunts liver tumor progression in animal models according to new research from a team led by Celeste Simon, PhD, a professor of Cell and Developmental Biology in the Perelman School of Medicine at the University of Pennsylvania and scientific director of the Abramson Family Cancer Research Institute.
Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.
Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.
First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.
Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.
More Cancer Cells News and Cancer Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.