'First economical process' for making biodiesel fuel from algae

March 25, 2009

SALT LAKE CITY, March 25, 2009 -- Chemists reported development of what they termed the first economical, eco-friendly process to convert algae oil into biodiesel fuel -- a discovery they predict could one day lead to U.S. independence from petroleum as a fuel.

One of the problems with current methods for producing biodiesel from algae oil is the processing cost, and the New York researchers say their innovative process is at least 40 percent cheaper than that of others now being used. Supply will not be a problem: There is a limitless amount of algae growing in oceans, lakes, and rivers, throughout the world.

Another benefit from the "continuously flowing fixed-bed" method to create algae biodiesel, they add, is that there is no wastewater produced to cause pollution.

"This is the first economical way to produce biodiesel from algae oil," according to lead researcher Ben Wen, Ph.D., vice president of United Environment and Energy LLC, Horseheads, N.Y. "It costs much less than conventional processes because you would need a much smaller factory, there are no water disposal costs, and the process is considerably faster."

A key advantage of this new process, he says, is that it uses a proprietary solid catalyst developed at his company instead of liquid catalysts used by other scientists today. First, the solid catalyst can be used over and over. Second, it allows the continuously flowing production of biodiesel, compared to the method using a liquid catalyst. That process is slower because workers need to take at least a half hour after producing each batch to create more biodiesel. They need to purify the biodiesel by neutralizing the base catalyst by adding acid. No such action is needed to treat the solid catalyst, Wen explains.

He estimates algae has an "oil-per-acre production rate 100-300 times the amount of soybeans, and offers the highest yield feedstock for biodiesel and the most promising source for mass biodiesel production to replace transportation fuel in the United States." He says that his firm is now conducting a pilot program for the process with a production capacity of nearly 1 million gallons of algae biodiesel per year. Depending on the size of the machinery and the plant, he said it is possible that a company could produce up to 50 million gallons of algae biodiesel annually.

Wen also says that the solid catalyst continuous flow method can be adapted to mobile units so that smaller companies wouldn't have to construct plants and the military could use the process in the field.
-end-
The National Science Foundation funded Wen's research.

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 154,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

American Chemical Society

Related Biodiesel Articles from Brightsurf:

Making biodiesel from dirty old cooking oil just got way easier
Researchers develop a new sponge-like catalyst that is so tough it can make biodiesel from low-grade ingredients containing up to 50% contaminants.

Success in promoting plant growth for biodiesel
Scientists of Waseda University in Japan succeeded in promoting plant growth and increasing seed yield by heterologous expression of protein from Arabidopsis (artificially modified high-speed motor protein) in Camelina sativa, which is expected as a useful plant for biodiesel.

Lithium ion battery waste used in biodiesel production from discarded vegetable oil
Brazilian researchers demonstrated a new chemical approach for producing biodiesel from domestic cooking oil waste by using hydroxide lithium mixed with either sodium hydroxides or potassium hydroxides as catalysts.

Eco-friendly biodiesel from palm oil?
Vegetable oil biofuels are increasingly used as an alternative to fossil fuels despite the growing controversy regarding their sustainability.

Towards sustainability -- from a by-product of the biodiesel industry to a valuable chemical
Scientists at Tokyo Institute of Technology (Tokyo Tech) and the National Taiwan University of Science and Technology (Taiwan Tech) develop a cheap and efficient copper-based catalyst that can be used to convert glycerol, one of the main by-products of the biodiesel industry, into a valuable compound called dihydroxyacetone.

Efficiently producing fatty acids and biofuels from glucose
Researchers have presented a new strategy for efficiently producing fatty acids and biofuels that can transform glucose and oleaginous microorganisms into microbial diesel fuel, with one-step direct fermentative production.

Using E. coli to create bioproducts, like biodiesel, in a cost-effective manner
LSU mechanical engineering graduate student Tatiana Mello of Piracicaba, Brazil, is currently working on genetically engineering and optimizing E. coli bacteria to produce bioproducts, like biodiesel, in a cost-effective manner.

Metal-free catalyst extends the range of ester synthesis
A Japanese research team at Nagoya University created a versatile, metal-free catalyst for trans-esterification.

Researchers produce biofuel for conventional diesel engines
In accordance with an EU directive, conventional automotive diesel is supplemented with seven percent biodiesel.

New breakthrough makes it easier to turn old coffee waste into cleaner biofuels
Future Americano, cappuccino and latte drinkers could help produce the raw material for a greener biofuel that would reduce our reliance on diesel from fossil fuels.

Read More: Biodiesel News and Biodiesel Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.