Rice fine-tunes attack on cancer

March 25, 2009

HOUSTON - (March 25, 2009) - Two lasers may be better than one when attacking cancer cells, according to a paper by Rice University scientists.

Yildiz Bayazitoglu, Rice's H.S. Cameron Chair Professor of Mechanical Engineering and an authority on heat transfer and fluid flow, and doctoral student Jerry Vera are using computer simulations to quantify the effect of heating nanoparticles with near-infrared lasers to kill cancer tumors without damaging healthy tissue.

They hope to raise the efficiency of destroying tumors by fine-tuning methods of heating them based on the size and composition of not only the tumor but also the surrounding tissue.

The paper summarizing their results, "Gold Nanoshell Density Variation with Laser Power for Induced Hyperthermia," is published in the January issue of the International Journal of Heat and Mass Transfer.

The researchers found that attacking a tumor with two lasers can heat it more thoroughly than a single laser. For tumors as large as one centimeter, simulations showed opposing lasers surgically inserted via fiber optics in a minimally invasive procedure produced the most uniform temperature profile in every case.

Lasers and nanoparticles are already being used to treat cancer. A Houston company founded by Rice scientists Jennifer West and Naomi Halas, Nanospectra Biosciences, Inc., is conducting human tests of a system that uses nanoshells heated by near-infrared lasers to kill tumors. Bayazitoglu, West and Halas are all part of Rice's Laboratory for Nanophotonics.

The Bayazitoglu group's approach would refine such treatment by taking into account the light-scattering properties of nanoparticles. Their concern is that nanoparticles near the surface of a tumor will block a laser from reaching those at the center.

"Think about it this way: If you're driving on a very foggy night, you can only see just so far no matter how good your headlights are," wrote Vera in an article about the research. "That's because the millions of small water droplets in the air absorb and scatter the light, deflecting the beams from your headlights before they can reflect off of whatever's ahead of you on the road.

"Nanoparticles dispersed within a tumor do exactly the same thing. They're very good at absorbing laser light and generating heat, but within particularly thick tumors, that same quality prevents a lot of the light from reaching deeper into the tissue."

Bayazitoglu said this phenomenon, called "extinction," is "highly undesirable." A uniform temperature profile of at least 60 degrees Celsius has to be created to kill the whole tumor. "Raising the temperature on one end but not the other will simply allow the tumor to re-grow, and that doesn't solve the problem - or cure the patient."

The density and placement of nanoparticles in the tumor are important, said Bayazitoglu. "Ideally, you should put nanoparticles at the center of the tumor, then kill it from the center out," she said.

Laser treatment may be effective even if nanoparticles are not used, she said. "If the tumor has good absorption properties, slow heating can do a good job of killing the cancer, because the heat has time to get inside. If you're doing that, sometimes it's better not to use nanoparticles."

With so many tissue types and the great variety of cancers people face, the importance of accurate simulations cannot be overemphasized, the researchers said. They hope the ability to calculate scenarios will allow doctors to find the best laser therapy to produce the perfect heating environment.
-end-
The research was funded by the Alliances for Graduate Education and the Professoriate program through the National Science Foundation.

The paper can be viewed at: http://tinyurl.com/dx7qlj

An article by Vera on the research can be found at: http://www.media.rice.edu/media/NewsBot.asp?MODE=VIEW&ID=12339&SnID=1489196568

Rice University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.